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We examined the role of working memory (WM) in dynamic decision making by having participants
perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants
performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The
decreasing option always gave a larger immediate reward but caused future rewards for both options to
decrease. The increasing option always gave a smaller immediate reward but caused future rewards for
both options to increase. In each experiment we manipulated the reward structure such that the decreasing
option was the optimal choice in 1 condition and the increasing option was the optimal choice in the other
condition. Behavioral results indicated that dual-task participants selected the immediately rewarding
decreasing option more often, and single-task participants selected the increasing option more often,
regardless of which option was optimal. Thus, dual-task participants performed worse on 1 type of task
but better on the other type. Modeling results showed that single-task participants’ data were most often
best fit by a win-stay, lose-shift (WSLS) rule-based model that tracked differences across trials, and
dual-task participants’ data were most often best fit by a Softmax reinforcement learning model that
tracked recency-weighted average rewards for each option. This suggests that manipulating WM load
affects the degree to which participants focus on the immediate versus delayed consequences of their
actions and whether they employ a rule-based WSLS strategy, but it does not necessarily affect how well
people weigh the immediate versus delayed benefits when determining the long-term utility of each
option.
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Decision making is a recurring task in our everyday lives. Our
decisions have both immediate and delayed consequences, and
understanding the mechanisms that affect decision making is of
much importance. One thing required of the decision maker is
adequate cognitive resources to balance the strengths and weak-
nesses of each choice option. Many common decision-making
paradigms used in the laboratory involve participants repeatedly
choosing from more than one option and receiving rewards or
punishments, often in the form of points or money gained or lost
(e.g., Bechara, Damasio, Damasio, & Anderson, 1994; Otto, Mark-
man, Gureckis, & Love, 2010; Rakow & Newell, 2010; Worthy,
Maddox, & Markman, 2007; Yechiam, Busemeyer, Stout, &
Bechara, 2005). In these paradigms, the decision maker’s goal is

typically to maximize gains and/or minimize losses. Each option
must be assigned some expected reward value, and the decision
maker must consider not only the immediate benefit that results
from selecting each option but also each option’s delayed benefits
when determining the long-term utility of each option.1

Some research suggests that development and maintenance of
expected reward values for the various choice options require
working memory (WM) resources (Bechara & Martin, 2004; Cur-
tis & Lee, 2010; Dretsch & Tipples, 2008; Hinson, Jameson, &
Whitney, 2002). Under this view, reduced WM resources might
hinder one’s ability to develop and maintain expected reward
values, which are needed to make the best decisions. One decision-
making process that could be dependent on WM resources is
simply remembering the rewards given when each option was last
chosen. The decision maker can gain valuable insight into the
values of each option by simply considering their immediate
payoffs.

1 In our paradigm, which involves decision making under uncertainty,
the term expected reward value is used to represent an estimate of the
reward that will be received upon selecting each option. This is distinct
from the term expected value, which has often been used to represent an
optimal objective representation of the benefit of an option. Expected value
is calculated by multiplying the reward associated with each option by the
probability of receiving the reward, when both are known, as in
description-based decision-making paradigms (e.g., Tversky & Kahneman,
1981).
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However, another possibility is that people can implicitly learn
which options lead to the largest immediate rewards without
explicitly remembering the rewards associated with each option.
There is much evidence that suggests that a prediction error,
which is the difference between the reward received and the
expected reward value for a given option, is tracked by the ventral
striatum, a subcortical region implicated in implicit, procedural
learning (Hare, O’Doherty, Camerer, Schultz, & Rangel, 2008;
Pagnoni, Zink, Montague, & Berns, 2002; Pessiglione, Seymour,
Flandin, Dolan, & Frith, 2006). In many popular reinforcement
learning models these prediction errors are used to update the
expected value for the option that was chosen on each trial (e.g.,
Sutton & Barto, 1998; Worthy et al., 2007; Yechiam et al., 2005).
These expected values are essentially running averages of the
immediate rewards associated with each option, with more weight
given to the rewards received most recently. The ability of sub-
cortical regions to track these expected reward values suggests that
people have the ability to implicitly learn which option provides
the highest immediate payoff on each trial and that this ability may
remain intact under WM load (e.g., Frank & Claus, 2006; Frank,
O’Reilly, & Curran, 2006).

Although the work cited above suggests that expected reward
values based on the immediate rewards received are tracked by
subcortical regions that are also associated with implicit, or pro-
cedural, learning, it is nevertheless very likely that expected re-
ward values can be explicitly verbalized (e.g., “Option A seems to
give larger immediate rewards than Option B”). Thus, it is difficult
to distinguish whether the dual WM task leads participants to make
decisions based on a more implicit processing mode or whether the
dual task leads participants to use a simpler strategy that is over-
seen by a weakened explicit processing system.

Immediate payoffs are important to consider, but consideration
must also be given to each option’s delayed payoffs. Often, the
consequences of certain decisions are not realized immediately but
become manifest at some point in the future. This is similar to
many real-world decisions, such as deciding whether to attend
graduate school or join the workforce immediately after graduating
from college. Joining the workforce may lead to more immediate
benefits in the form of higher income than would be earned while
in graduate school, but a graduate degree could very likely mean
higher cumulative income over the course of one’s life. Thus, a
second consideration that must be kept in mind when making
decisions is how current choices will influence future outcomes or
possibilities. People must not be temporally myopic in that they
fail to see the delayed consequences of each option as well as the
immediate consequences.

A final component of the decision-making process is to effi-
ciently juxtapose the immediate and delayed benefits of each
option in order to make the best decision. Although it is very often
the case that making decisions based on how those decisions will
be rewarded in the future is the best strategy, there are also
situations where the immediate benefits outweigh any potential
delayed benefits. For example, someone who is nearing retirement
age may have little to gain by quitting a job to attend graduate
school; similarly, someone may be faced with such a great imme-
diate job prospect that going to graduate or law school may be
counterproductive. In some situations the immediate benefits of
one option are so valuable that they outweigh any potential de-

layed benefits of other options (Otto, Markman, & Love, 2012;
Worthy, Gorlick, Pacheco, Schnyer, & Maddox, 2011).

Our goal in the present work is to investigate the role of WM
load in these three common components of decision making:

1. Evaluation of the immediate benefits of each option.

2. Evaluation of the delayed benefits of each option.

3. Juxtaposition of the immediate and delayed benefits to
maximize cumulative reward.

One hypothesis is that the amount of necessary WM resources will
increase from Components 1 to 3, with the evaluation of the
immediate benefits requiring the fewest WM resources and the
juxtaposition of the immediate and delayed benefits requiring
the most WM resources. To address this issue we use a dynamic
decision-making paradigm that is ideal for examining the role of
WM load in these three component processes of decision making.

Figure 1 shows the reward structures we use in Experiment 1.
We use similar reward structures in Experiment 2, but we vary
some aspects of the task to broaden the scope of our findings. In
particular, we use different surface features in Experiment 2 that
are more similar to gambling paradigms that have been extensively
used to examine experience-based decision making (e.g., Bechara
et al., 1994; Worthy et al., 2007, 2008; Yechiam et al., 2005). In
these tasks there are two options that participants choose from and
receive rewards from on each trial. One option, the increasing
option, gives a smaller reward on each trial, but selecting this
option causes rewards for both options to increase on future trials.
This can be seen on the x-axes for Figures 1a and 1b, where
rewards are a direct function of the number of times the increasing
option has been selected over the previous 10 trials. The other
option, the decreasing option, gives a larger reward on any given
trial, but selecting this option causes future rewards for both
options to decrease. Thus, selecting the decreasing option always
leads to a larger immediate reward, and selecting the increasing
option always leads to larger rewards for both options on future
trials. Tendencies to select either of these options can indicate a
preference or bias toward immediate versus delayed payoffs, and
we can thus address how WM load influences these preferences.

To address how WM load affects the third component of deci-
sion making listed above, the juxtaposition of the immediate and
delayed benefits of each option, we alter which option is optimal
between the reward structures in Figure 1a and 1b. Figure 1a
shows the reward structure for Experiment 1’s increasing-optimal
task. Here the increasing option is the optimal choice because
repeatedly selecting it will lead to more oxygen earned on each
trial (80 points) than the amount earned from repeatedly selecting
the decreasing option (40 points). In contrast, in the decreasing-
optimal task shown in Figure 1b, the decreasing option gives a
much larger reward on each trial than the increasing option (60
points more). Here the amount earned from repeatedly selecting
the increasing option (55 points) is smaller than the amount earned
from repeatedly selecting the decreasing option (65 points), so
selecting the increasing option is futile and counterproductive even
though it leads to more rewards for both options on future trials. To
perform well on both of these tasks, participants must not simply
be biased toward the immediate versus delayed benefits of the two

1641WORKING MEMORY AND DYNAMIC DECISION MAKING



options but instead must effectively juxtapose the benefits of the
two options.

We examine the role of WM load by having participants make
decisions with or without performing a concurrent numerical
Stroop task that is designed to deplete available WM resources.
This task has been successfully used in previous published work to
examine the role of WM load during category learning (Miles &
Minda, 2011; Newell, Dunn, & Kalish, 2010; Waldron & Ashby,
2001; Zeithamova & Maddox, 2006). This research has found that
depleting WM resources through the use of the numerical Stroop
task results in impaired performance on explicit, rule-based tasks,
where a verbalizable rule can distinguish members of each cate-
gory, but it does not impair performance on procedural,
information-integration tasks, where verbalizable rule use is diffi-
cult (but see Newell et al., 2010, and Nosofsky & Kruschke, 2002,
for a counterargument, and Ashby & Ell’s 2002 reply to Nosofsky
& Kruschke, 2002). The numerical Stroop task requires partici-
pants to maintain information about two different properties of the
numbers presented in working memory while making each deci-

sion (the numerical value of the number as well as the font size
used to display the number).

Predictions

We offer two possible hypotheses for how performing under
dual-task versus single-task conditions will affect dynamic deci-
sion making. One possibility is that participants performing under
dual-task conditions will simply underperform on both increasing-
optimal and decreasing-optimal tasks. Previous research has dem-
onstrated poor choice performance under WM load for participants
performing the Iowa Gambling task (Dretsch, & Tipples, 2008;
Hinson et al., 2002), and reduced WM resources from the dual task
may simply attenuate participants’ ability to appropriately weigh
the immediate and delayed benefits of each option. Additionally,
some previous research suggests that WM load may simply lead to
more random responding (Franco-Watkins, Pashler, & Rickard,
2006). However, this conclusion has been challenged by other

Figure 1. Rewards given for each task as a function of the number of increasing option selections over the
previous 10 trials. (a) Rewards given for the increasing-optimal task. Selecting the increasing option 10
consecutive times will lead to a reward of 80 points on each trial, whereas selecting the decreasing option 10
consecutive times will lead to a reward of 40 points on each trial. (b) Rewards given for the decreasing-optimal
task. Selecting the decreasing option 10 consecutive times will lead to a reward of 65 points on each trial,
whereas selecting the Increasing option 10 consecutive times will lead to a reward of 55 points on each trial.
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findings that suggest that participants under WM load are not
simply behaving randomly (e.g., Dretsch & Tipples, 2008).

A second possibility, which we view as more likely, is that the
dual task will cause a type of temporal myopia so that participants
under WM load are unable to observe the long-term effects of
selecting each option. This may result from the WM load causing
dual-task participants to learn the expected values for each option
more implicitly based on the immediate feedback received after
each selection and the resultant prediction error. Some previous
work suggests that WM load may actually increase implicit forms
of learning due to a reduction in interference from the explicit
system when the task requires an implicit strategy (e.g., Filoteo,
Lauritzen, & Maddox, 2010; Maddox, Ashby, Ing, & Pickering,
2004). Single-task participants may rely less on immediate feed-
back and may use a heuristic-based strategy that focuses on com-
paring the rewards received across trials. Such a comparison would
allow single-task participants to observe the delayed effects of
choosing each option. One possible strategy that single-task par-
ticipants may employ is a win-stay, lose-shift (WSLS) strategy
(Nowak & Sigmund, 1993; Otto, Taylor, & Markman, 2011;
Steyvers, Lee, & Wagenmakers, 2009). This is a rule-based strat-
egy that has been shown to be used in binary prediction tasks (e.g.,
Otto et al., 2011). Under this strategy, participants “stay” by
picking the same option on the next trial if they were rewarded and
“switch” by picking the other option on the next trial if they were
not rewarded.

Here, we examine whether participants use a more elaborate
version of this strategy in the present tasks by examining whether
participants “stay” by picking the same option on the next trial if
the reward was equal to or larger than reward received on the
previous trial (a “win” trial) or “shift” by selecting the other option
on the next trial if the reward received on the current trial was
smaller than the reward received on the previous trial (a “lose”
trial). After examining the behavioral data to determine if there are
differences in the proportion of times single- and dual-task partic-
ipants select each option and how well they perform on the tasks,
we then fit the data with two learning models: a Softmax rein-
forcement learning model, which assumes that expected reward
values are updated each time an option is chosen based on the
rewards received immediately after each selection, and a WSLS
model, which assumes that participants adjust their behavior based
on a comparison between the current reward and the reward
received on the previous trial. These models both have long
histories in the decision-making literature. The former model may
mimic a more implicit or procedural decision-making mode, and
the latter model likely mimics a more explicit, or rule-based,
decision-making mode. A WSLS strategy also requires partici-
pants to remember the reward that was received on the previous
trial. The dual task will make doing so more difficult. Accordingly,
we predict that behavior of single-task participants will be better
described by the WSLS model and that behavior of dual-task
participants will be better described by the Softmax reinforcement
learning model. The use of these different strategies should lead
single-task participants to select the increasing option more often
than dual-task participants do across all conditions. In the next
section we present the details of the WSLS and Softmax models
and then present simulations of the tasks shown in Figure 1 for
each model. These simulations provide predictions for how par-

ticipants will perform if they are using WSLS or Softmax-based
strategies.

Predictions From the WSLS and Softmax Models

The WSLS and Softmax models have been used in many pre-
vious studies to characterize decision-making behavior, and the
assumptions and mechanisms of each are transparent (Frank &
Kong, 2008; Lee, Zhang, Munro, & Steyvers, 2011; Otto et al.,
2011; Steyvers et al., 2009; Sutton & Barto, 1998; Worthy &
Maddox, 2012; Worthy et al., 2007).

The Softmax model assumes that participants develop expected
values (EVs) for each option that represent the rewards they expect
to receive upon selecting each option. EVs for all options are
initialized at 0 at the beginning of the task and are updated only for
the chosen option, i, according to the following updating rule:

EVi,t�1 � EVi,t � � · �r�t� � EVi,t� (1)

Learning is modulated by a learning rate, or recency, parameter
(�), 0 � � � 1, that weighs the degree to which the model
updates the EVs for each option based on the prediction error
between the reward received [r(t)], and the current EV on trial t.
As � approaches 1, greater weight is given to the most recent
rewards in updating EVs, indicative of more active updating of
EVs on each trial, and as � approaches 0, rewards are given less
weight in updating EVs. When � � 0 no learning takes place, and
EVs are not updated throughout the experiment from their initial
starting points.

The EVs for all j options are used to determine the model’s
probability for selecting each option. Action selection probabilities
for each option (a) are computed via a Softmax decision rule
(Sutton & Barto, 1998):

P�at� �
e��·EVa,t�

�
j�1

4 e��·EVj,t�
(2)

Here � is an exploitation parameter that determines the degree to
which the option with the highest EV is chosen. As � approaches
infinity the highest valued option is chosen more often, and as �
approaches 0 all options are chosen equally often. This model has
been used in a number of previous studies to characterize choice
behavior (e.g., Daw, O’Doherty, Seymour, & Dolan, 2006; Otto et
al., 2010; Worthy et al., 2007; Yechiam & Busemeyer, 2005).

The WSLS model has two free parameters: the probability of
staying with the same option on the next trial if the reward
received on the current trial is equal to or greater than the reward
received on the previous trial, P�stay�win�, and the probability of
shifting to the other option on the next trial if the reward received
on the current trial is less than the reward received on the previous
trial, P�shift�loss�.

To predict how participants would perform if they were relying
on a WSLS versus a Softmax-based strategy we conducted 1,000
simulations for each model for each of the two tasks shown in
Figure 1. We selected reasonable parameter values to use in the
simulations based on parameter values for each model that pro-
vided a good fit to data from published work in our labs (Worthy
et al., 2011). The parameters used for the WSLS model were .90
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for P�stay�win� and .5 for P�shift�loss�, and the parameters used for
the Softmax model were .50 for � and .03 for �.

Figure 2 shows the average proportion of trials that each model
selected the increasing option in each task. The WSLS model
selected the increasing option more than the Softmax model did in
both tasks, and there was no difference between the two tasks. This
is because the model’s decisions are based only on whether
the current reward is greater or less than the reward given on the
previous trial, regardless of the magnitude of the difference. The
Softmax model, which is sensitive to the magnitude of the differ-
ence in average rewards given for each option, selected the in-
creasing option less often than the WSLS model did in both tasks
but much less often in the decreasing-optimal task, where the
decreasing option gives a substantially higher reward than the
increasing option on each trial. We predict, based on these simu-
lations, that single-task participants, who are predicted to rely on a
WSLS strategy more than dual-task participants, will select the
increasing option more than dual-task participants will in both
tasks. This will lead to better performance in the increasing-
optimal task but worse performance than dual-task participants in
the decreasing-optimal task.

Experiment 1

Method

Participants. Ninety-eight undergraduate students at Texas
A&M University participated in the experiment for course credit.
Participants were randomly assigned to one of four between-
subjects conditions that consisted of the factorial combination of
two WM load conditions (single-task vs. dual-task) and two re-
ward structure conditions (increasing-optimal vs. decreasing-
optimal). There were 23 participants in the dual-task decreasing-
optimal condition and 25 participants in each of the other three
conditions.

Materials and procedure. Participants performed the exper-
iment on PCs using Psychtoolbox for Matlab (version 2.5).

The procedure for the single-task conditions was nearly identi-
cal to the procedure used in a previous study in our labs (Worthy
et al., 2011). Figure 3 shows a sample screenshot from the exper-
iment. Participants were given a cover story that they would be

testing two extraction systems that farmed oxygen on Mars, and
their goal was to extract as much oxygen as possible. A similar
paradigm has been used elsewhere to examine other issues in
dynamic decision making (Gureckis & Love, 2009a, 2009b; Otto
et al., 2009; Otto et al., 2012). On each trial participants were told
to “collect oxygen using one of the two systems” that appeared at
the top of the screen. They were allowed as much time as they
wished to make a response. After a delay of 500 ms the amount of
oxygen they received for that trial was indicated in the narrow tank
labeled “Current,” and after another 1,000 ms the oxygen would be
emptied into the “Cumulative” tank. To roughly equate the exper-
iment time between WM load conditions, there was a 1,000-ms
intertrial interval in the single-task conditions in which a black
screen came up and participants saw the phrase, “Please wait for
the next trial . . .” The next trial would then begin.

Participants performed a total of 250 trials of the task. The
rewards they received were based on the reward structures shown
in Figure 1. Participants in the increasing-optimal condition re-
ceived rewards plotted in Figure 1a, and participants in the
decreasing-optimal condition received rewards plotted in Fig-
ure 1b. The place on the x-axis was determined on each trial by
summing the number of times participants had selected the in-
creasing option over the previous trial. Thus, there was a “moving
window” that kept a count of the number of times the increasing
option was selected on each trial. All participants began the ex-
periment at the midpoint (5) on the x-axis.

A line on the larger tank corresponded to the amount of oxygen
needed to sustain life on Mars. Participants were given the goal of
trying to collect this amount of oxygen over the course of the
experiment. The goal lines were set at the equivalent of 18,000
points for the increasing-optimal task and 16,000 points for the
decreasing-optimal task. This corresponded to selecting the opti-
mal choice in each task on roughly 80% of trials. Participants were
told nothing about the rewards available for each option or the
choice history–dependent structure of the rewards.

The procedure for participants in the dual-task conditions was
modified from the procedure for the single-task conditions to
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Figure 2. Average proportion of increasing options selected from each
model’s simulations. WSLS � win-stay, lose-shift model; Softmax �
Softmax reinforcement learning model.

Figure 3. Sample screen shot from the experiment. Participants were
given a cover story in which they were asked to test two oxygen-extraction
systems on the Martian landscape. The oxygen extracted on each trial was
shown in the Current tank and then transferred to the Cumulative tank.
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include a numerical Stroop task used in previous work to investi-
gate the role of WM load in perceptual category learning ( Wal-
dron & Ashby, 2001; Zeithamova & Maddox, 2006). Participants
had to perform a numerical analogue of the Stroop task (Stroop,
1935) concurrently with the decision-making task. The concurrent
task required participants to remember which of two numbers was
physically larger and which was larger in numerical value and to
hold that information in mind while deciding which oxygen system
to choose on each trial. On each trial the picture of Mars, the two
extraction systems, and the Current and Cumulative point meters
were presented in the center of the screen. At the beginning of the
trial the two numbers for the concurrent task were presented on
each side of the screen, one number on each side, for 200 ms. After
200 ms a uniform white mask covered the numbers for 200 ms.
Participants were then allowed to choose from one of the two
oxygen extraction systems, and they were given feedback in a
manner identical to that described above. A new screen then
appeared that queried participants with either VALUE or SIZE, and
participants selected from buttons labeled Left or Right to indicate
which side had the number largest in either numerical value or
physical size. After they made their response they were told
whether they were correct or not, and the next trial began imme-
diately.

Following previous studies that have used the same concurrent
task manipulation, participants were told that they were required to
achieve at least 80% accuracy on the numerical Stroop task and
that they should focus first on achieving good performance on the
numerical Stroop task and “use what you have left over” for the
decision-making task (e.g., Waldron & Ashby, 2001; Zeithamova
& Maddox, 2006). Participants’ current accuracy on the numerical
Stroop task was indicated at the top of the screen when they
received feedback regarding their performance on the concurrent
task on each trial. Their percentage correct score was listed in
green if it was above 80% and in red if it was below 80%. All of
the participants in the study achieved at least 80% accuracy on the
numerical Stroop task.2

Results

Behavioral analyses. The effects of WM load on behavior
can be seen by simply plotting the proportion of times participants
selected the increasing option over the course of the experiment
(see Figure 4a). A 2 (WM load) 	 2 (reward structure) analysis of
variance (ANOVA) revealed a significant effect of WM load, F(1,
94) � 17.46, p 
 .001, �2 � .16. Participants in the single-task
(M � .49, SD � .21) condition selected the increasing option much
more often than participants did in the dual-task condition (M �
.30, SD � .24). There was a also a significant effect of task type,
F(1, 94) � 7.73, p 
 .01, �2 � .08. Participants who performed
the increasing-optimal task (M � .45, SD � .24) selected the
increasing option more often than participants who performed the
decreasing-optimal task did (M � .33, SD � .23). The WM
Load 	 Task Type interaction was not significant (F 
 1).

To compare performance across tasks we derived a measure of
the proportion of the optimal cumulative payoff that is commen-
surable across task structures. This measure was derived by com-
puting (points earned – minimum possible points)/range of possi-
ble points earned. Because points received are a function of the
proportion of times a participant selects each option, the proportion

of the optimal cumulative payoff value is an indirect measure of
the proportion of times participants made the optimal choice for
each reward structure. We used this measure rather than points
earned on the task, because it equated performance across the two
tasks, which differed in their reward structures. Figure 3b plots the
proportions of the optimal cumulative payoff for participants in
each condition. A 2 (WM load) 	 2 (reward structure) ANOVA
revealed a significant effect of reward structure, F(1, 94) � 25.11,
p 
 .001, �2 � .21. Participants in the decreasing-optimal reward
structure conditions (M � .67, SD � .23) earned higher propor-
tions of the optimal cumulative payoff than participants in the
increasing-optimal conditions did (M � .45, SD � .24). There was
also a significant WM Load 	 Reward Structure interaction, F(1,
94) � 18.15, p 
 .001, �2 � .16. We conducted pairwise com-
parisons within each reward structure to examine the locus of this
interaction. For the increasing-optimal reward structure, single-
task participants (M � .55, SD � .22) significantly outperformed
dual-task participants (M � .36, SD � .22), F(1, 48) � 9.60, p 

.01, �2 � .17. However, for the decreasing-optimal reward struc-
ture, dual-task participants (M � .77, SD � .23) significantly
outperformed single-task participants (M � .58, SD � .20), F(1,
46) � 8.59, p 
 .01, �2 � .16.

2 We did not observe any correlations with performance on the WM task
and performance in the decision-making task in either experiment. Most
participants performed well above 80%, and so there was little variance in
performance on the WM task within the dual-task condition.
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Figure 4. (a) Proportion of increasing options selections for participants
in each condition of Experiment 2. (b) Proportion of the optimal cumula-
tive payoff participants earned in the task. These proportions are roughly
equivalent to the proportion of times participants selected the optimal
option based on the reward structure. Error bars represent standard errors.
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We also examined the mean response times for participants in
each condition. These are shown in Figure 5. A 2 (WM load) 	 2
(reward structure) ANOVA revealed a significant effect of WM
load, F(1, 94) � 25.11, p 
 .001, �2 � .21. Dual-task participants
(M � 1.44, SD � 0.62) took significantly longer to make a
decision than single-task participants (M � 0.79, SD � 0.38). One
possibility for the longer response times for dual-task participants
is that they spent time rehearsing the information for the numerical
Stroop task before making a decision on each trial.

Model-based analyses. We fit each participant’s data indi-
vidually with the Softmax and WSLS models. We also fit a
baseline or null model that assumes fixed choice probabilities
(Gureckis & Love, 2009a; Worthy & Maddox, 2012; Yechiam et
al., 2005). This model has one free parameter, p(Increasing), that
represents the probability of selecting the increasing option on any
given trial. The probability of selecting the decreasing option is
1 � p(Increasing). Although this model does not assume that
participants learn from rewards given on each trial, it can often
provide a good fit to the data (Gureckis & Love, 2009a). Indeed,
the optimal strategy in each task is to select the best option
repeatedly, and data from a participant who exhibited such maxi-
mizing behavior would be well fit by the baseline model. Thus, a
good fit for the baseline model does not necessarily imply random
responding.

The models were assessed based their ability to predict each
choice a participant would make on the next trial, by estimating
parameter values that maximized the log-likelihood of each model
given the participant’s choices. We used Akaike’s information
criterion (AIC) (Akaike, 1974) to examine the fit of the WSLS and
Softmax models relative to the fit of the baseline model. AIC
penalizes models with more free parameters. For each model, i,
AICi is defined as

AICi � �2logLi � 2Vi (3)

where Li is the maximum likelihood for model i, and Vi is the
number of free parameters in the model. Smaller AIC values
indicate a better fit to the data. We compared the fits of the WSLS
and Softmax models relative to fits of the baseline model by
subtracting the AIC of each model from the AIC of the baseline
model for each participant’s data (e.g., Gureckis & Love, 2009a):

Relative Fit�M� � AICB � AICM (4)

Positive values indicate a better fit of the learning model, and
negative values indicate a better fit of the baseline model.

The relative fits for each model are listed in Table 1. Data from
single-task participants are better fit by the WSLS model, and
those from dual-task participants are better fit by the Softmax
model. Overall, relative fit values were lower for dual-task partic-
ipants, although data from single-task participants who performed
the decreasing-optimal task were fit no better by the Softmax
model than the baseline model. This could suggest that the behav-
ior of dual-task participants is more random than the behavior of
single-task participants (cf. Franco-Watkins et al., 2006), or that
they followed a near-deterministic response process by selecting
the decreasing option on the majority of trials. However, average
relative fits of the Softmax model for dual-task participants were
well above 0 in both tasks, which suggests that this model provided
a good fit to a large number of dual-task participants’ data. We also
examined the proportion of data sets that were fit best by the
baseline model. The baseline model provided the best fit for 20%
of dual-task participants in the increasing-optimal task and 39% of
participants in the decreasing-optimal task, compared to only 4%
and 12% of single-task participants in the increasing and
decreasing-optimal tasks, respectively. These differences in the
proportion of single- and dual-task participants that were best fit
by the baseline model are both significant (p 
 .05 by binomial
test). Thus, there was more evidence for dual-task participants
relative to single-task participants being best fit by the baseline
model, but there was also much evidence that dual-task partici-
pants were fit well by the Softmax model. This suggests that they
were not simply behaving randomly.

Having established that participants were by and large well
characterized by models that exhibit dependence on previous ac-
tions and outcomes rather than a null model, we next compared the
relative fit of the WSLS model and the Softmax model. To obtain
a relative measure of the degree to which the WSLS model
provided a better fit to the data, we subtracted the log-likelihood of
the WSLS model from the log-likelihood of the Softmax model
(Relative fitWSLS � lnLSoftmax � lnLWSLS). Because these models
have the same number of free parameters, their log-likelihood
values can be compared directly. Under our likelihood ratio metric,
positive Relative fitWSLS values indicate a better fit for the WSLS
model, and negative Relative fitWSLS values indicate a better fit for
the Softmax model.

Figure 6 shows the Relative fitWSLS values for participants in
each condition. We performed nonparametric Mann–Whitney U
tests to examine the effects of WM load and reward structure, as
the Relative fitWSLS distributions were markedly nonnormal. There
was a significant effect of WM load (U � 564.50, p 
 .001).
Single-task participants (M � 45.35, SD � 66.36) had much
higher Relative fitWSLS values than dual-task participants did (M �
�11.63, SD � 22.40). This suggests that single-task participants
were more likely to use a WSLS strategy and that dual-task
participants were more likely to use a Softmax strategy. There was
no significant effect of reward structure (U � 1,316, p 
 .10).

Parameter estimates. The average estimated parameter val-
ues for participants in each condition are listed in Table 2. We
conducted a 2 (WM load) 	 2 (reward structure) ANOVA on the
average estimated recency parameter (�) values for participants in
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Figure 5. Average response times for participants in each condition.
Error bars represent standard errors.
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each condition. There was a marginally significant effect of WM
load, F(1, 94) � 3.11, p 
 .10, �2 � .03. Data from participants
in the single-task condition were better fit by higher recency
parameter values (M � .39, SD � .45) than data from participants
in the dual-task condition were (M � .24, SD � .36). There was no
effect of reward structure and no WM Load 	 Reward Structure
interaction (Fs 
 1). The difference in recency parameter values
between single- and dual-task participants is consistent with the
results of Otto et al. (2011), who found higher estimated recency
parameter values for single-task participants who performed a
simple binary prediction task. Otto et al. also found increased
reliance on a WSLS strategy among single-task participants com-
pared to dual-task participants. One interpretation of this differ-
ence is that single-task participants are more responsive to recent
outcomes. One way in which the Softmax model may account for
data from participants who are using a WSLS strategy is by better
fitting the data with higher estimated recency parameter values.
This suggests that there may be an association between recency
parameter values and Relative fitWSLS. We did indeed find such a
correlation (r � .23, p 
 .05).3

A 2 (WM load) 	 2 (reward structure) ANOVA on the average
estimated exploitation parameter (�) values for participants in each
condition revealed no effect of WM load or reward structure and
no interaction (Fs 
 1). For the P�stay�win� parameter, a 2 (WM
load) 	 2 (reward structure) ANOVA showed no effect of WM
load, F(1, 94) � 1.28, p 
 .10, and no effect of reward structure,
F(1, 94) � 1.08, p 
 .10. However, there was a significant WM
Load 	 Reward Structure interaction, F(1, 94) � 4.12, p 
 .05,
�2 � .04. For the increasing-optimal task, data from single-task
participants (M � .83, SD � .09) were best fit by P�stay�win�
parameter values significantly higher than those for data from
dual-task participants (M � .74, SD � .17), F(1, 94) � 5.52, p 

.05, �2 � .10. However, there was no difference between single-
and dual-task participants for the decreasing-optimal task (F 
 1).

For the P�shift�loss� parameter, a 2 (WM load) 	 2 (reward
structure) ANOVA revealed a main effect of WM load, F(1, 94) �
8.55, p 
 .01, �2 � .08. Data from single-task participants (M �
.37, SD � .18) were best fit by P�shift�loss� parameter values lower
than those for data from dual-task participants (M � .46, SD �
.12). There was also a main effect of reward structure, F(1, 94) �
9.95, p 
 .01, �2 � .10. Estimated P�shift�loss� parameters were
higher for data from participants who performed the increasing-

optimal task (M � .46, SD � .15) than for data from participants
who performed the decreasing-optimal task (M � .37, SD � .15).
The WM Load 	 Reward Structure interaction was not significant.

Cross-fitting analysis. Recent work has demonstrated that
model complexity cannot be solely accounted for by measures like
AIC or the Bayesian information criterion (BIC: Schwarz, 1978) to
penalize models for the number of free parameters (Djuric, 1998;
Myung & Pitt, 1997). Often, models with the same number of free
parameters can differ in how flexible they are in accounting for
data. For example, the WSLS model may be more flexible than the
Softmax model in that it can account for a wider range of behavior
in decision-making tasks, or the Softmax model may be more
flexible in that it can account for data from participants who are
using a WSLS strategy with higher recency parameter values. To
address this issue we used a procedure known as the parametric
bootstrap cross-fitting method (PBCF) proposed by Wagenmakers
and colleagues (Wagenmakers, Ratcliff, Gomez, & Iverson, 2004;
see also Donkin, Brown, Heathcote, and Wagenmakers, 2011, for
a similar approach). This method involves simulating a large
number of data sets with each of two models and then fitting each
data set with each model. If neither model can mimic the other
model, the model that generated the data should provide the best fit
to the majority of data sets. However, if a large proportion of data
sets that are generated by one model is fit better by the non-data-
generating model, that would suggest that the non-data-generating
model is more flexible in its ability to mimic the true data-
generating model.

We used sets of parameter values that were estimated from our
participants’ data for the simulated data sets. For each task we
generated 2,000 data sets using parameter combinations that were
sampled with replacement from the best fitting parameter distri-
butions for participants in each experiment. Thus, for the Softmax
model we randomly sampled a combination of � and � that
provided the best fit to one participant’s data and used those
parameter values to perform one simulation of the task. We gen-
erated 2,000 simulated data sets in this manner and performed the
same simulation procedure with the WSLS model. We then fit
each simulated data set with both models and determined the
Relative fitWSLS value for each data set as outlined above.

Figure 7 plots histograms of the Relative fitWSLS values for data
generated by each model for the increasing-optimal task (see
Figure 7a) and the decreasing-optimal task (see Figure 7b). These
values should be less than zero for data generated by the Softmax
model and greater than zero for data generated by the WSLS
model if neither model is able to mimic the other model. For the
increasing-optimal task, 85% of data sets generated by the Softmax
model were also fit best by the Softmax model, and 98% percent
of data sets generated by the WSLS model were also fit best by the
WSLS model. This suggests that the WSLS model has a higher
probability of mimicking the Softmax model than vice versa. The
overall probability of correct classification of the data-generating
model is (.85 � .98)/2 � .915 (Wagenmakers et al., 2004).

For the decreasing-optimal task, 71% of data sets generated by
the Softmax model were also fit best by the Softmax model, and

3 A reanalysis of the data reported by Otto et al. (2011) found a strong
relationship between estimated recency parameter values and the relative
fit of the WSLS model used to fit their data (r � .87, p 
 .001).

Table 1
Relative Fits of the WSLS and Softmax Models to the Baseline
Model for Experiment 1

Task and condition WSLS Softmax

Increasing-optimal task
Single-task 60.15 (12.56) 29.51 (9.41)
Dual-task 4.32 (8.29) 16.93 (6.99)

Decreasing-optimal task
Single-task 59.79 (14.23) �0.20 (3.57)
Dual-task 3.18 (7.57) 13.75 (6.38)

Note. Positive values indicate a better fit of each model than for the
baseline model. Values shown are means and standard errors of the mean
(SE). WSLS � win-stay, lose-shift; Softmax � Softmax reinforcement
learning.
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97% of data sets generated by the WSLS model were also fit best
by the WSLS model. The overall probability of correct classifica-
tion of the data generating model is .84. These results suggest (a)
that there is a high probability of correctly classifying the model as
the true data-generating model and the probability is higher for the
increasing-optimal task than the decreasing-optimal task (.915 vs.
.840) and (b) that the WSLS model is better able to mimic the
Softmax model than vice versa.

However, it should be noted that the majority of data sets that
were generated by the Softmax model but better fit by the WSLS
model had Relative fitWSLS values that were only slightly greater
than 0, indicating only a slightly better fit by the WSLS model.
This is indicated by the large spikes around the zero point in the
x-axis in Figures 7a and 7b. Thus, for many data sets the models
provided essentially the same fit to the data. The average Relative
fitWSLS values for single-task participants in both tasks were ex-
tremely high (M � 30.65 for the increasing-optimal task and M �
59.99 for the decreasing-optimal task). Our cross-fitting analysis
suggests that it is unlikely that these large Relative fitWSLS values
for single-task participants resulted from the WSLS model mim-
icking the Softmax model. Thus, although the WSLS model may
be able to mimic the Softmax model to some extent, it is highly
unlikely that single-task participants who were best fit by the

WSLS model were actually using a strategy that is consistent with
the Softmax model.

Discussion

The data clearly indicate that WM load modulates the degree to
which participants attend to the immediate versus delayed conse-
quences of their actions, and the model-based analyses support this
conclusion. We used an experimental paradigm that allowed us to
examine this immediate versus delayed dichotomy by offering two
choices: one that always led to a larger immediate reward (the
decreasing option) and one that always led to larger rewards for
both options on future trials (the increasing option), despite giving
a smaller immediate payoff on each trial. The paradigm also
allowed us to manipulate which of the two options was the optimal
choice for the task, and this allowed us to examine whether WM
load affected the preference for the immediate versus delayed
rewarding option or whether it affected participants’ ability to
juxtapose the benefits of each option. Both our behavioral and
model-based analyses clearly show that WM load affected only the
preference for immediate versus delayed rewarding option, with
participants in the single-task conditions preferring the increasing
option, which led to larger delayed rewards, in both tasks more
than participants in the dual-task conditions did. Thus, the WM
load brought about by the concurrent dual task hurt in one case but
helped in the other.

The model-based analyses show a clear effect of WM load on
the relative fit of two models that assume different decision-
making strategies. Behavior of single-task participants was best fit
by the WSLS model, which assumes that participants maintain the
reward received on the last trial in WM and use it as a benchmark
for deciding whether to stay with the option that was picked or
shift to the other option. A WSLS strategy will allow participants
to notice how each option causes future rewards to either increase
or decrease. For example, if participants repeatedly select the
increasing option they will repeatedly “win,” and if participants
repeatedly select the decreasing option they will repeatedly “lose.”
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Figure 6. Average relative fit values of the WSLS model compared to the Softmax reinforcement learning
model for data from Experiment 1. Higher values indicate a better fit for the WSLS model. Error bars represent
standard errors. WSLS � win-stay, lose-shift; Softmax � Softmax reinforcement learning.

Table 2
Average Best Fitting Parameter Values for Participants in Each
Condition in Experiment 1

Task and condition P(stay�win) P(shift�loss) � �

Increasing-optimal task
Single-task .82 (.02) .41 (.04) .36 (.09) .12 (.04)
Dual-task .73 (.03) .51 (.02) .21 (.07) .19 (.06)

Decreasing-optimal task
Single-task .80 (.02) .33 (.03) .43 (.09) .12 (.05)
Dual-task .82 (.41) .41 (.03) .27 (.08) .14 (.05)

Note. Standard errors of the mean are listed in parentheses.
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Figure 7. Distributions of fits of the WSLS model relative to the Softmax model for data simulated by each
model for the (a) increasing-optimal and (b) decreasing-optimal tasks. Values greater than zero indicate a better
fit for the WSLS mode, values less than zero indicate a better fit for the Softmax model, and values equal to zero
indicate an equal fit for the two models. WSLS � win-stay, lose-shift; Softmax � Softmax reinforcement
learning.
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Data from dual-task participants were fit less well by the WSLS
model than the Softmax reinforcement learning model. This sug-
gests that WM load led participants to update their expected values
for each option based only on the rewards received immediately
after each selection. The WM load manipulation may have pre-
vented dual-task participants from noticing how previous choices
affected rewards on future trials. The modeling results also suggest
that there may be separate implicit and explicit systems that
operate in different ways. The implicit system may develop ex-
pected values based on immediate feedback and compare the
expected values for each option to make decisions; the explicit
system may use verbalizable rules, such as “pick the same option
if the reward was greater than or equal to the reward received on
the previous trial, or switch options if the reward received was less
than the reward received on the previous trial,” and makes deci-
sions based on the rule being used (e.g., Otto et al., 2011). This is
similar to a prominent dual systems view in category learning that
posits the existence of an explicit, rule-based system and a proce-
dural, information-integration system that relies on immediate
feedback (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Ashby & Maddox, 2005; Maddox & Ashby, 2004). The results are
also consistent with a long line of research that has posited the
existence of dual learning systems, with a major distinction being
between a WM-dependent, explicit system and a non-WM-
dependent, implicit associative system (Evans, 2008; Metcalfe &
Mischel, 1999; Poldrack & Packard, 2003; Sloman, 1996; Smith &
DeCoster, 2000; Strack & Deutsch, 2004).

Although the two tasks used in Experiment 1 differed in the
choice that was optimal, they also differed in how many points
would be rewarded if one consistently picked the optimal versus
the inferior option. In the increasing-optimal task the participant
earned 80 points for selecting the Increasing option repeatedly,
whereas only 40 points was earned for selecting the decreasing
option repeatedly. In the decreasing-optimal task the participant
earned 65 points for selecting the decreasing option repeatedly,
whereas only 55 points was earned for selecting the increasing
option repeatedly. Thus, what we will call “end-state separa-
tion”—the difference in points earned between repeatedly select-
ing the optimal option versus repeatedly selecting the sub-optimal
option—differed between the two tasks, with the increasing-
optimal task having a larger end-state separation (40 points) than
the decreasing-optimal task (10 points) did.

In Experiment 2 we conceptually replicated the effect of WM
load on decision making and equated end-state separation between
the increasing-optimal and decreasing-optimal tasks. We had par-
ticipants perform either the increasing-optimal task from Experi-
ment 1 or a decreasing-optimal task with a large end-state sepa-
ration (40 points, which is the end-state separation for the
increasing-optimal task), under either single- or dual-task condi-
tions. These reward structures are shown in Figure 8.

Here, we used a more traditional gambling task paradigm rather
than the Mars farming cover story used in Experiment 1. Figure 9
shows a sample screenshot from the experiment. A main difference
between the Mars farming task and gambling task paradigms, of
potential relevance to the WM task manipulation, is the form of
feedback given after each decision. In the Mars farming task setup,
feedback is given in the form of the amount of oxygen shown in
the narrow tank after each selection, and no numbers are shown to
represent the amount of oxygen given. In the gambling task setup,

numbers representing points or money are given as feedback
following each selection. One possibility is that a numerical form
of feedback may be easier to remember than a perceptual form of
feedback such as the amount of oxygen shown in the tank. Thus,
dual-task participants may be better able to remember past reward
amounts if given concrete numerical reward information. For
single-task participants, numerical information about the rewards
given on each trial may bias them away from selecting the increas-
ing option in the decreasing-optimal task. The decreasing option
gives 90 more points on each trial than the increasing option does
in this task, which should be very noticeable to participants.

However, we did not predict that changing the task setup would
alter the differences between single- and dual-task participants that
we found in Experiment 1. Nevertheless it is important to replicate
the results in a gambling task framework to broaden the scope of
our findings. Additionally, a replication would suggest that the
surface features of the task do not significantly affect decision-
making behavior. To our knowledge, this has not been directly
tested. Such a finding might be useful for designing future work.
For example, researchers might be able to examine differences in
decision-making behavior in a within-subjects design by altering
the surface features of the task to minimize effects of repeated
testing.

Experiment 2

Method

Participants. Seventy-nine undergraduates from Texas
A&M University participated in the experiment for course credit.
Participants were randomly assigned to one of the four conditions
that resulted from the factorial combination of two WM load
(single- vs. dual-task) and two reward structure (increasing- vs.
decreasing-optimal) conditions.

Materials and procedure. The reward structure for the
increasing-optimal task was identical to the reward structure from
the increasing-optimal task in Experiment 1, shown again in Fig-
ure 8a, and the reward structure for the decreasing-optimal task is
shown in Figure 8b. These reward structures both had an end-state
separation of 40 points. Figure 9 shows a sample screenshot from
the experiment. Two decks were presented on each trial, a red deck
and a blue deck. In the single-task condition participants selected
from one of the two decks, and the resulting reward value was
revealed above the chosen deck. The point total was then incre-
mented based on the number of points earned on that trial. Partic-
ipants were given a goal of earning 18,000 points in the increasing-
optimal task and 22,000 points in the decreasing-optimal task. To
achieve these goals, participants had to select the optimal option on
about 80% of trials.

As in the first experiment, dual-task participants concurrently
performed the numerical Stroop task. The procedure for the nu-
merical Stroop task is identical to the procedure detailed in the
Method section for Experiment 1 above. Participants performed a
total of 250 trials and were told whether they reached their goal at
the end of the experiment.

Results

Figure 10a shows the proportion of increasing option selections
for participants in each condition. A 2 (WM load) 	 2 (reward
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structure) ANOVA revealed a significant effect of WM load, F(1,
75) � 39.56, p 
 .001, �2 � .35. Single-task participants (M �
.54, SD � .27) selected the increasing option more often than
dual-task participants did (M � .24, SD � .17). There was also a
significant effect of reward structure, F(1, 75) � 7.18, p 
 .01,
�2 � .09. Participants who performed the increasing-optimal task
(M � .45, SD � .27) selected the increasing option more often
than participants who performed the decreasing-optimal task did
(M � .32, SD � .25). The WM Load 	 Reward Structure inter-
action was not significant (F 
 1).

Figure 10b shows the proportion of the optimal cumulative
payoff earned by participants in each condition. This was com-
puted in the same way as in Experiment 1 and is roughly equiv-
alent to the proportion of times they selected the optimal option for

the task. A 2 (WM load) 	 2 (reward structure) ANOVA revealed
a main effect of reward structure, F(1, 75) � 25.46, p 
 .001,
�2 � .25, where participants who performed the decreasing-
optimal task (M � .69, SD � .24) earned a higher proportion of the
optimal cumulative payoff than participants who performed the
increasing-optimal task did (M � .45, SD � .27). The effect of
WM load was nonsignificant (F 
 1); however, there was a
significant WM Load 	 Reward Structure interaction, F(1, 75) �
39.32, p 
 .001, �2 � .34. Pairwise comparisons within each
reward structure condition showed that single-task participants
(M � .62, SD � .25) earned a higher proportion of the optimal
cumulative payoff than dual-task participants did (M � .28, SD �
.17) in the increasing-optimal task, F(1, 38) � 24.89, p 
 .001,
�2 � .40, and dual-task participants (M � .81, SD � .16) earned

Figure 8. Rewards given for each task as a function of the number of the number of Increasing option
selections over the previous 10 trials. (a) Rewards given for the increasing-optimal task. Selecting the increasing
option 10 consecutive times will lead to a reward of 80 points on each trial, whereas selecting the decreasing
option 10 consecutive times will lead to a reward of 40 points on each trial. (b) Rewards given for the
decreasing-optimal task. Selecting the decreasing option 10 consecutive times will lead to a reward of 95 points
on each trial, whereas selecting the increasing option 10 consecutive times will lead to a reward of 55 points on
each trial.
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a higher proportion of the optimal cumulative payoff than single-
task participants did (M � .56, SD � .24) in the decreasing-
optimal task, F(1, 38) � 14.94, p 
 .001, �2 � .25.

Figure 11 shows the average response times for participants in
each condition. A 2 (WM load) 	 2 (reward structure) ANOVA
revealed a main effect of WM load, F(1, 75) � 32.50, p 
 .001,
�2 � .30. Single-task participants (M � .67, SD � .54) took
significantly less time to respond than dual-task participants did
(M � 1.32, SD � .46). There was no effect of reward structure,
F(1, 75) � 1.13, p 
 .10, and no WM Load 	 Reward Structure
interaction (F 
 1).

Model-based analyses. We used the modeling approach from
Experiment 1 to examine the types of strategies participants used.
Table 3 lists the fits of each learning model relative to the sto-
chastic baseline model. Positive values indicate a better fit for each
learning model than the baseline model. The results are similar to
those from Experiment 1. Single-task participants are better fit by
the WSLS model, and dual-task participants are better fit by the
Softmax model. Fits of the learning models relative to the baseline
model are also higher for single-task participants. In the
increasing-optimal task, 10% of data sets from single-task partic-
ipants are best fit by the baseline model, compared to 40% of data
sets for dual-task participants (p 
 .01 by binomial test). However,
in the decreasing-optimal task, the difference in the number of data
sets best fit by the baseline model was much smaller, with 5% of
data sets from single-task participants best fit by the baseline
model, compared to 10% of data sets from dual-task participants.
This was not a significant difference (p 
 .10 by binomial test).
Thus, dual-task participants who performed the decreasing-optimal
task did not exhibit more stochastic behavior than single-task
participants who performed the same task.

Figure 12 shows the Relative fitWSLS values for participants in
each condition. There was a significant effect of WM load, Mann–

Whitney U � 299.00, p 
 .001. Single-task participants (M �
44.62, SD � 58.29) had much higher Relative fitWSLS values than
dual-task participants did (M � �11.63, SD � 22.40). The effect
of reward structure was nonsignificant, Mann–Whitney U �
937.00, p 
 .10. Thus, replicating our result from Experiment 1,
single-task participants were fit better by the WSLS model, and
dual-task participants were fit better by the Softmax model.

Parameter estimates. We next examined the best fitting
parameter estimates from each model (see Table 4). We conducted
a 2 (WM load) 	 2 (reward structure) ANOVA on the average
estimated recency parameter (�) values for participants in each
condition. There was a marginally significant effect of WM load,
F(1, 75) � 3.19, p 
 .10, �2 � .04. Single-task participants’ data
(M � .47, SD � .47) were best fit by recency parameter values
higher than those for dual-task participants’ data (M � .29, SD �
.41). There was also a significant correlation between estimated
recency parameter values and Relative fitWSLS values (r � .26, p 

.05). This result is consistent with the results from Experiment 1
and Otto et al. (2011), and it suggests that the Softmax model
accounts for single-task participants’ increased WSLS strategy use
by estimating higher recency parameter values for single-task
participants than for dual-task participants. A 2 (WM load) 	 2
(reward structure) ANOVA on the average estimated exploitation
parameter (�) values for participants in each condition revealed no
effect of WM load or reward structure (Fs 
 1) and no WM
Load 	 Reward Structure interaction, F(1, 75) � 1.89, p 
 .10.

We next conducted a 2 (WM load) 	 2 (reward structure)
ANOVA on the average estimated P�stay�win� parameter values
for participants in each condition. There was no effect of WM load
(F 
 1), but there was a marginally significant effect of reward
structure, F(1, 75) � 2.91, p 
 .10, �2 � .04. P�stay�win� param-
eter values were higher for participants who performed the
decreasing-optimal task (M � .84, SD � .17) than for participants

PICK A CARD!

Goal:
18,000

Earned:
9,875

Figure 9. Sample screen shot from the gambling task used in Experiment 2. Participants received points after
each selection and had a goal of earning a certain amount of points over the course of the experiment.

1652 WORTHY, OTTO, AND MADDOX



who performed the increasing-optimal task (M � .77, SD � .19).
There was also a marginally significant WM Load 	 Reward
Structure interaction, F(1, 75) � 2.79, p 
 .10, �2 � .04. For the
increasing-optimal task, single-task participants’ data (M � .81,
SD � .21) were fit best by P�stay�win� parameter values higher
than those for dual-task participants’ data (M � .73, SD � .17),
although this difference was nonsignificant, F(1, 38) � 1.65, p 

.10. In contrast, for the decreasing-optimal task, single-task par-
ticipants’ data (M � .81, SD � .87) were fit best by P�stay�win�

parameter values lower than those for dual-task participants’ data
(M � .87, SD � .12), although this difference also was nonsig-
nificant, F(1, 37) � 1.15, p 
 .10.

A 2 (WM load) 	 2 (reward structure) ANOVA on the average
estimated P�lose�shift� parameter values for participants in each
condition showed no effect of WM load (F 
 1), but there was a
significant effect of reward structure, F(1, 75) � 6.03, p 
 .05,
�2 � .07. P�lose�shift� parameter values were higher for partici-
pants who performed the increasing-optimal task (M � .54, SD �
.15) than for participants who performed the decreasing-optimal
task (M � .45, SD � .16). The WM Load 	 Reward Structure
interaction did not reach significance, F(1, 75) � 1.56, p 
 .10.

Cross-fitting analysis. We performed the same cross-fitting
analysis that we performed for Experiment 1 data to examine the
degree to which each model can mimic the other model. Figure 13
plots histograms of the Relative fitWSLS values for data generated
by each model for the increasing-optimal task (Figure 13a) and the
decreasing-optimal task (Figure 13b). For the increasing-optimal
task, 76% of data sets generated by the Softmax model were also
fit best by the Softmax model, and 98% percent of data sets
generated by the WSLS model were also fit best by the WSLS
model. For the decreasing-optimal task, 81% of data sets generated
by the Softmax model were also fit best by the Softmax model, and
99% of data sets generated by the WSLS model were also fit best
by the WSLS model. Similar to the results from Experiment 1, a
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Figure 10. (a) Proportion of Increasing options selections for participants
in each condition of Experiment 2. (b) Proportion of the optimal cumula-
tive payoff participants earned in the task. These proportions are roughly
equivalent to the proportion of times participants selected the optimal
option based on the reward structure. Error bars represent standard errors.
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Figure 11. Average response times for participants in each condition.
Error bars represent standard errors.
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Figure 12. Average relative fit values of the WSLS model compared to
the Softmax model for data from Experiment 2. Higher values indicate a
better fit for the WSLS model. Error bars represent standard errors.
WSLS � win-stay, lose-shift; Softmax � Softmax reinforcement learning.

Table 3
Relative Fits of the WSLS and Softmax Models to the Baseline
Model for Experiment 2

Task and condition WSLS Softmax

Increasing-optimal task
Single-task 63.62 (12.47) 39.51 (11.83)
Dual-task �6.13 (5.45) 3.35 (3.07)

Decreasing-optimal task
Single-task 69.35 (12.62) 4.21 (4.76)
Dual-task 5.12 (8.09) 11.51 (3.15)

Note. Positive values indicate a better fit of each model than the baseline
model. Values shown are means and standard errors of the mean (SE).
WSLS � win-stay, lose-shift; Softmax � Softmax reinforcement learning.
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large number of data sets clustered around the 0 point on the
x-axis. This suggests that the WSLS model provided an equal or
only slightly better fit that the Softmax model to a large number of
data sets that were generated by the Softmax model. Thus, the
WSLS model appears to be better able to mimic the Softmax
model, but only to the degree that it can fit a portion of the
Softmax-generated data sets roughly equally well but not substan-
tially better.

Discussion

The pattern of results is identical to the pattern from Experiment
1. Single-task participants selected the increasing option more
often than dual-task participants did, regardless of which option
was optimal for the task. Dual-task participants also took a longer
time to respond. This suggests that they were not simply making a
quick decision to get to the numerical Stroop query but may have
engaged in effortful encoding of the numerical Stroop stimuli at
the beginning of each trial before making a decision. Our model
comparison revealed that single-task participants were better fit by
a model that assumes a rule-based WSLS strategy, and dual-task
participants were better fit by a Softmax reinforcement learning
model that assumes a more associative strategy. When we com-
pared the parameter estimates for participants in each condition we
found that the Softmax model’s recency, or learning rate, param-
eter values were higher for single-task participants than for dual-
task participants. This effect was also found in Experiment 1 and
was previously found by Otto et al. (2011) in a binary prediction
task. Thus, participants who performed the decision-making task
under WM load were less responsive to recent outcomes and
showed almost no evidence of WSLS strategy use. Instead, dual-
task participants used a strategy consistent with the Softmax
model, in which they tended to select the option that, on average,
gave the highest immediate reward (the decreasing option). It
should also be noted that a substantial proportion of dual-task
participants’ data were fit best by the baseline model (although this
was not the case for the decreasing-optimal task in Experiment 2).
This suggests that these participants may have used very little
information from the rewards they received to adjust their response
tendencies and instead selected the decreasing option on a large
number of trials. This behavior seems plausible in that it was likely
salient to the dual-task participants early in the task that the
decreasing option always gave a higher immediate reward, and so
they simply decided to select this option on the majority of trials.
The baseline comparisons across both experiments do suggest that

dual-task participants exhibited attenuated learning in response to
the rewards they received on each trial. However, we do not feel
that our results suggest that dual-task participants were simply
behaving randomly, as they clearly showed a preference for the
decreasing option.

General Discussion

WM load is a common variable in everyday decision making.
People make decisions both while focusing solely on the decision
at hand and while keeping intrusive, extraneous information in
mind (Burgess, 2000; Burgess, Veitch, Costello, & Shallice, 2000;
Strayer & Drews, 2007). One straightforward prediction is that
more available WM resources will lead to better decision making,
yet our results suggest that this is not the case. They suggest that
WM load affects the degree to which participants focus on the
immediate versus delayed benefits of each option and whether
people operate in an explicit, rule-based mode that utilizes heuris-
tics (like WSLS) or whether they operate in a more implicit,
associative mode that maximizes the options with the highest
immediate reward. Participants who performed the task under
single-task conditions did not simply make better decisions but
instead made their decisions in a different manner than participants
who were placed under WM load did. Single-task participants
made decisions based on a comparison of the current reward to the
reward received on the previous trial, and dual-task participants
made decisions based on which option would give the best imme-
diate reward. Focusing on the differences in rewards received
across trials was productive for one task (the increasing-optimal
task) but counterproductive for the other task (the decreasing-
optimal task).

When placed in the context of the three components of decision
making outlined above, our results suggest that WM load does not
affect the third, and perhaps most important, component of deci-
sion making, the juxtaposition of the immediate versus delayed
consequences of selecting each option. Rather, WM load appears
to directly affect the first two components. The results for partic-
ipants in the single-task conditions of each experiment are perhaps
most interesting. Single-task participants exhibited sensitivity to
the increasing option’s effect on the rewards for both options on
future trials, yet they seemed to pick this option without realizing
that the immediate benefits of the decreasing option outweighed
the delayed benefits of the increasing option in the decreasing-
optimal tasks. This pattern of results generalized across two sep-
arate experiments with different reward structures (small vs. large
end-state separation) and different surface features (Mars farming
and gambling). Single-task participants selected the increasing
option more often than dual-task participants did, even when the
decreasing option gave 90 more points than the increasing option
on each trial and when the difference in end-state separation was
40 points (Experiment 2).

Moreover, the decreasing-optimal task can be considered “eas-
ier” than the increasing-optimal task because participants earned a
higher proportion of the optimal cumulative payoff in the
decreasing-optimal conditions in both experiments. Thus, single-
task participants performed better on the “harder” increasing-
optimal tasks but worse on the “easier” decreasing-optimal tasks.
These results could suggest a lack of metacognitive awareness
among our participants, in that they were unable to appropriately

Table 4
Average Best Fitting Parameter Values for Participants in Each
Condition in Experiment 4

Task and condition P(stay�win) P(shift�loss) � �

Increasing-optimal task
Single-task .81 (.05) .56 (.04) .42 (.11) .17 (.06)
Dual-task .73 (.04) .52 (.02) .29 (.07) .07 (.01)

Decreasing-optimal task
Single-task .81 (.05) .43 (.03) .53 (.11) .07 (.05)
Dual-task .87 (.41) .47 (.03) .29 (.10) .13 (.07)

Note. Standard errors of the mean are listed in parentheses.
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weigh the immediate and delayed benefits of each option to make
the best decisions.

One caveat to this work is that we chose one working memory
load manipulation (the numerical Stroop task) among many. Other
working memory tasks, such as memorizing a digit span, keeping
a running count of tones presented during the task, or generating a
random number, have also been successfully used to manipulate

WM load. Although we believe that the numerical Stroop task
successfully depleted working memory resources, there is also
evidence that different WM load manipulations can differentially
affect working memory capacity (e.g., Jameson, Hinson, & Whit-
ney, 2004; Miles & Minda, 2011). Thus, the possible differences in
the effects of specific WM load manipulations should be consid-
ered when designing future research.

Figure 13. Distributions of fits of the WSLS model relative to the Softmax model for data simulated by each
model for the (a) increasing-optimal and (b) decreasing-optimal tasks. Values greater than zero indicate a better
fit for the WSLS mode, values less than zero indicate a better fit for the Softmax model, and values equal to zero
indicate an equal fit for the two models. WSLS � win-stay, lose-shift; Softmax � Softmax reinforcement
learning.
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Dual Learning Systems

The implications of these results should also be considered for
dual-system theories cognition. Many dual-system theories would
likely predict that worse performance for dual-task participants on
the increasing-optimal task was due to those participants using a
more reflexive strategy, which would favor options with larger
immediate rewards. However, one could predict that single-task
participants who are operating in a more reflective, or “cold-
cognitive,” mode should be capable of more rational, abstract
reasoning and should be able to learn the optimal choice for the
task (Evans, 2003).

Our modeling results suggest that, rather than behaving ratio-
nally, single-task participants used their unoccupied WM resources
to employ a simple, rule-based strategy that was not always opti-
mal. Future work should examine what affects this third opponent
of decision making. One possibility is that, for single-task partic-
ipants, the two systems are operating simultaneously and that the
explicit system is dominant. This view of competition between the
systems is a central feature of Ashby and colleagues’ COmpetition
between Verbal and Implicit Systems (COVIS) theory of category
learning (Ashby et al., 1998). One possibility is that the implicit
system interferes with the explicit system under single-task con-
ditions, which leads single-task participants to utilize simple rules
such as WSLS rather than reflectively juxtapose the strengths and
weaknesses of each option. We admit that this line of reasoning is
speculative, but future work could potentially develop testable
predictions from theories that propose competition between im-
plicit and explicit systems.

As we acknowledged in the introduction, the notion that the
Softmax model mimics an implicit or procedural processing mode
is consistent with work that has demonstrated that subcortical
regions can develop and update expected reward values based on
the immediate rewards received after selecting each option (Hare
et al., 2008; Pagnoni et al., 2002; Pessiglione et al., 2006). How-
ever, the strategy “select the option that has, on average, given the
largest rewards on recent trials” is obviously verbalizable and
capable of being explicitly represented. This strategy is likely more
simple than the WSLS shift strategy, and so the dual task may have
simply led participants to use a simpler strategy that is also explicit
in nature.

Related to the dual-systems issue is the role that affect played in
guiding our participants’ behavior. Many dual-systems theories
propose that the implicit system is the “hot” or affectively rich
system (Evans, 2003; Sloman, 1996), and affect has been shown to
play a role in gambling tasks like the ones our participants per-
formed (Bechara, Damasio, & Damasio, 2000; Bechara et al.,
1994). One possibility is that the hot, affective system favors
options based on their immediate rewards and that the cold-
cognitive system must override this tendency to select options that
do not lead to the best immediate rewards. This notion of compe-
tition between implicit (affective) and explicit (cognitive) systems,
whereby the explicit system must override the implicit system, is
a central feature of many dual-system theories (e.g., Cohen, 2005;
Sloman, 1996). In our experiments, the compromised working
memory resources of dual-task participants may have prevented
them from overriding the affect-based tendency to select the option
that gave higher immediate rewards.

Implications and Future Directions

A central aim for future work should be to examine what
processes affect the third component of decision making outlined
above, which could be described as making the optimal decision
for the situation. One possibility is that WM capacity affects the
juxtaposition of the immediate and long-term consequences of
each action, but WM load does not. Our study examined only WM
load and did not measure individual differences in WM capacity.
Future work should identify whether individual differences in WM
capacity affect decision making in situations similar to the exper-
iments reported here and also whether WM capacity interacts with
WM load. Individuals with high WM capacity may outperform
individuals with low WM capacity on both tasks; however, it is
also possible that individual differences in WM capacity will have
the same effect on preferences for immediate versus delayed
outcomes that we found by manipulating WM load.

These results have important implications for everyday decision
making. Multitasking has become a ubiquitous part of modern life
(e.g., Burgess et al., 2000; Vestergren & Nilsson, 2011). Here we
demonstrated that the degree to which WM resources are divided
between separate, simultaneous tasks appears to have very large
effects on the strategies people employ in decision making. Our
results indicate that attenuating WM resources by performing a
concurrent task can lead to a temporal myopia in decision making
whereby individuals are able to focus on only the immediate
consequences of their actions. Intriguingly, our results also suggest
that being free from a distracting secondary task is not always
beneficial. The full resources available to our single-task partici-
pants may have led them to employ a more WM-demanding
strategy than was needed for a relatively easy task.
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