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Recent work suggests that older adults’ decision-making behavior is highly affected by
recent events. In the present work, younger and older adults performed a 2-choice task
where 1 option provided a larger average reward, but there was a large amount of noise
around the mean reward for each option, which led to sharp improvements or declines
in rewards over trials. Older adults showed greater responsiveness to recent events than
younger adults as evidenced by fits of Reinforcement Learning (RL) models. Older
adults were particularly sensitive to recent negative events, which was evidenced by a
strong tendency for older adults to switch to the other option following steep declines
in reward. This tendency led to superior performance for older adults in 1 condition
where heightened sensitivity to recent negative events was advantageous. These results
extend prior work that has found an older adult bias toward negative feedback and
suggest that older adults engage in more abrupt switching in response to negative
outcomes than younger adults.
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People of all ages must make many decisions
on a daily basis, with varying degrees of uncer-
tainty regarding the outcomes. One critical as-
pect in decision-making under uncertainty in-
volves learning from the consequences, or
outcomes, of each decision. Observation of
long-term trends regarding which options, on
average, lead to better payoffs than other com-
peting options is a crucial aspect of decision-

making. Similarly, observation of short-term
trends or abrupt changes in reward outcomes
can also strongly affect decisions (Kovach et al.,
2012; Otto, Markman, & Love, 2012).
Recent work has demonstrated that older

adults may rely on simple heuristics during de-
cision-making more than younger adults (Be-
sedes, Deck, Sarangi, & Shor, 2012; Castel,
Rossi, & McGillivray, 2012; Worthy & Mad-
dox, 2012). One commonality among these heu-
ristics is an increased reliance on recent events.
For example, older adults are more likely than
younger adults to endorse the “hot-hand” heu-
ristic in basketball, which gives greater weight
to recent shot outcomes than the shooter’s long-
term average in determining the probability that
the next shot will be made (Castel et al., 2012).
Similarly, older adults are more likely to utilize
a “win-stay-lose-shift” (WSLS) heuristic during
decision-making tasks, which entails focusing
only on changes in the most recent decision
outcomes. In contrast, younger adults’ behavior
is better characterized by a Temporal-Differ-
ence Reinforcement Learning (Sutton & Barto,
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1998) strategy that relies on an exponentially
weighted average of past rewards (Worthy &
Maddox, 2012; Worthy, Otto, & Maddox,
2012).
Based on these findings, we reasoned that

older adults may show enhanced sensitivity to
recent events during decision-making, namely
marked improvements or declines in reward for
each option. In addition, we proposed that the
greater attention given to recent events by older
adults would be most prevalent following recent
negative outcomes, or declines in reward, rela-
tive to previous trials. Supporting this prediction, a
number of recent studies demonstrate that older
adults learn more from negative rather than pos-
itive outcomes (Eppinger, Hammerer, & Li,
2011; Eppinger & Kray, 2011; Frank & Kong,
2008; Hämmerer, Li, Muller, & Lindenburger,
2011; Simon, Howard, & Howard, 2010). These
studies utilized probabilistic reinforcement
learning tasks with binary-valued outcomes
where participants were told that they were ei-
ther correct or incorrect on each trial. These
types of tasks mirror many real-world decision-
making situations where decisions can be di-
chotomously classified as “correct” or “incor-
rect.”
However, the positive and negative feedback

following choices often comes in varying mag-
nitudes, and moreover, these magnitudes fluc-
tuate over time. For example, financial invest-
ments can result in varying amounts of gains or
losses. Here, we examine whether older adults
are more sensitive than younger adults to recent
fluctuations in reward, and if their putative fo-
cus on negative feedback makes them more
likely to switch away from an option following
steep declines in reward. To test this, we had
older and younger adults perform two condi-
tions of a simple two-choice task where one
option provided larger rewards, on average,
than the other option, but there was a large
variance around the mean reward given by each
option. This led to large fluctuations in reward,
affording examination of responsiveness to re-
cent positive and negative events. We predicted
that both younger and older adults would learn
which option provided larger average rewards,
but at the same time, older adults would attend
more to recent events, particularly negative
events, compared with younger adults. To test
the latter prediction, we employ nuanced behav-
ioral metrics and computational modeling to

elucidate how recent reward trends influence
participants’ choices. In the first condition,
termed the “consistent rewards” condition, the
mean reward provided by each option remained
consistent over all trials but there was noise
around each option’s mean reward value. We
expected older adults to be more likely to switch
following steep declines in reward, relative to
the selected option’s expected value. However,
because these declines in reward were not in-
dicative of longer-term trends in expected value
of the choice options, we did not expect differ-
ences in overall task performance, as measured
by cumulative reward earned.
To provide a corroborative test of our hypoth-

esis, we had a second group of older and
younger adults make choices in a similar task
structure where switching based on recent neg-
ative events should result in better overall per-
formance. In this “variable rewards” condition,
if participants switched following a reward that
was less than the current average reward pro-
vided for the option they selected they would
receive a temporary “bonus” in the rewards they
received for both options. This bonus was
equivalent to the difference between the current
average reward for the option they had selected
and the reward they received prior to switching.
Thus, if older adults tended to switch more
following steep declines in reward then they
would be temporarily rewarded with larger re-
wards for both options, improving their perfor-
mance (see below for more detailed informa-
tion). To summarize, we predicted that older
adults would show similar behavior across the
two conditions, where they would be more
likely to switch following steep declines in re-
ward, and that this would lead to superior per-
formance, relative to younger adults, in the vari-
able rewards condition.

Method

Forty-seven older adults (mean age ! 67.43,
SD ! 5.05, range ! 61–78) and 49 younger
adults (mean age ! 20.02, SD ! 1.88, range !
18–26) were paid $8 per hour to complete the
experiment. There were 23 older adults and 25
younger adults in the consistent rewards condi-
tion, and 24 older and younger adults in the
variable rewards condition.
Older adult participants were recruited

through an advertisement in the local newspa-
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per and through flyers posted at locations
throughout the area. Younger adults were re-
cruited from flyers and email solicitations. Our
stopping rule for data collection was to recruit
25 participants in each condition and to stop
when we were no longer receiving responses
from interested participants.

Neuropsychological Testing Procedure

Older adults were given a series of standard-
ized neuropsychological tests. The battery of
tests was designed to assess general intellectual
ability and included: Wechsler Adult Intelli-
gence Scale–3rd edition (WAIS-III Digit Span;
Wechsler, 1997); Trails Making Test A&B
(TMT; Reitan, 1958); FAS (Lezak, 1995); Wis-
consin Card Sorting Task (WCST; Heaton,
1981), and the California Verbal Learning Test
(CVLT; Delis, Kramer, Kaplan, & Ober, 1987).
The tests were administered in a single 1-hr
session, in the same basic order to all subjects.
The delay period for the CVLT was kept con-
stant and was comprised of other tests not re-
quiring any long term memory storage.
The standard, age appropriate, published

norms were used to calculate normative scores
for each subject. Table 1 shows the means, SDs,
and ranges of standardized z-scores on each test
for older adult participants in the study. For the
WAIS digit-span test, the percentile was calcu-
lated according to testing instructions, and this
score was then converted to a standardized z-
score. For the CVLT and WCST, standardized T
scores were calculated according to testing di-
rections, and this score was then converted to a
standardized z-score. Finally, for the TMT,
standard z-scores were calculated according to

the testing instructions. There were no subjects
2 SDs below the standardized mean on more
than two neuropsychological tests. The neuro-
psychological testing session was held before
the experimental session, and only participants
who were within normal ranges were asked to
participate in the experiment.

Decision-Making Task Procedure

Participants were given a cover story that
they were astronauts on Mars testing two sys-
tems that extracted oxygen from the Martian
atmosphere (Figure 1a). Their goal was to ex-
tract as much oxygen as possible. In the consis-
tent rewards Condition System A extracted a
mean of 65 units of oxygen per trial, while
System B extracted a mean of only 55 units of
oxygen per trial (Figure 1b). The SD around
each system’s mean payoff was 10 units.1 Thus,
while System A yielded more reward on aver-
age than System B, both options rewards’ ex-
hibited large variance.
In the variable rewards condition both options

provided the same rewards, and an additional
value, ε, was added to the mean rewards for each
option from the consistent rewards condition. The
quantity ε changed the average rewards provided
by each option from the consistent rewards con-
dition, serving as a bonus when positive, and a
penalty when negative. The ε value was initialized
at 0 and updated each time participants switched
to a different option according to:

!t "X!r,i,t#1$ !t#1# rt#1,

if choicet % choicet#1;

otherwise, !t " !t#1 (1)

where X!r,i,t#1 is the mean reward value from the
consistent rewards condition for the chosen op-
tion, i, on the preceding trial and rt"1 is the reward
that was received on the previous trial. Thus, ε
was positively incremented if participants
switched following rewards that were less than the
current average, and negatively incremented if

1 Rewards were sampled using Matlab’s normrnd func-
tion, which provides random arrays from a normal distribu-
tion. The actual observed values for System 1 were (M !
54.12, SD ! 9.82), and for System 2 were (M ! 65.84,
SD ! 10.70).

Table 1
Average Scores on Neuropsychological Tests

Neuropsychological test M (SD) Range

Digit span 0.45 (.91) "1.3 to 2.5
Trails A ".14 (.81) ".1.75 to 1.61
Trails B ".23 (.72) "1.54 to 2.5
F-A-S verbal fluency test ".21 (.83) "1.81 to 2.15
WCST Errors .75 (1.35) "2.3 to 2.5
WCST Perseveration .80 (1.07) "1.9 to 2.5
CVLT Immediate Recall .63 (1.02) "1.5 to 2.5
CVLT Delayed Recall 0.31 (.94) "1.5 to 2.00

Note. WCST ! Wisconsin Card Sorting Task; CVLT !
California Verbal Learning Test.
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participants switched following rewards that were
greater than the current average. Note that if recent
events had no effect on participants’ switching
behavior then the amount of oxygen collected in
the consistent and variable rewards conditions
should be equivalent.
In both conditions, participants accumulated

oxygen by selecting either system on each of 100
trials. They were not told anything about the re-
wards they could expect to see from each option,
but had to learn from experience. In the consistent
condition participants were given a goal equiva-
lent to extracting 6,300 units of oxygen by end of
the experiment. This was roughly equivalent to
what would be achieved by selecting System A on
80% of trials, whereas in the variable condition
the goal was equivalent to extracting 7,000 units
of oxygen as we predicted that participants would
collect more oxygen because of the addition of the
bonus amount.

On each trial participants selected one of two
systems and a small oxygen meter on the right-
hand side of the screen filled up a certain
amount in blue representing the amount of ox-
ygen that had just been extracted. The oxygen
was then transferred into a larger tank represent-
ing the amount they had cumulatively extracted
(Figure 1a). At the end of the experiment par-
ticipants were told whether or not they reached
their goal and thanked for their participation.
We did not include any additional measures or
experimental conditions other than what are re-
ported below.

Results

Figure 2a shows the average cumulative re-
ward for participants in each condition. A 2
(Age) # 2 (Condition) analysis of variance
(ANOVA) revealed a significant effect of age,

Figure 1. (a) Sample screen-shot from the experiment. (b) Rewards provided by each option
in the consistent rewards condition. In the variable rewards condition, the rewards shown were
provided in addition to the bonus amount (ε) given by Equation 1.

Figure 2. (a) Average cumulative amount of oxygen gathered for participants in each group.
(b) Average proportion of System A selections. Error bars represent SEMs.
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F(1, 92) ! 6.87, p $ .01, %2 ! .069, a signif-
icant effect of condition, F(1, 92) ! 40.39, p $
.001, %2 ! .305, and a Significant Age # Con-
dition interaction, F(1, 92) ! 6.83, p $ .01,
%2 ! .069. Pairwise comparisons between older
and younger adults within each experimental con-
dition revealed no effect of age on performance
within the consistent rewards condition, t(46) !
.016, p! .99 (older adultsM! 6,249, SD! 175;
younger adults M ! 6,248, SD ! 189), but a
significant effect of age on performance within the
variable rewards condition, t(46) ! 2.70, p $ .01
(older adults M ! 7,203, SD ! 711; younger
adults M ! 6,646, SD ! 718).
We also examined the proportion of trials that

participants selected System A, the advanta-
geous option (Figure 2b). There was no main
effect for age (F $ 1) or condition (F ! 1.14)
and no Age # Condition interaction (F $ 1).
Thus, the superior performance for older adults
in the variable rewards condition was not sim-
ply because of their selecting the better option
more often than younger adults.
Next, we fit each participant’s data individu-

ally with a Basic and Expanded version of a
Reinforcement-Learning (RL) model to investi-
gate the degree to which participants utilized re-
cent and long-term reward outcomes. RL models
have proven to be a valuable tool in much prior
work for conducting more thorough analyses of
decision-making behavior (e.g., Busemeyer &
Stout, 2002; Worthy, Maddox, & Markman,
2007; Yechiam & Busemeyer, 2005).
The models both assumed that the expected

value (V) for each option is an exponentially
weighted average of the rewards that have been
received after selecting each option. Vs for all
options were initialized at 60 units which is the
midpoint between the average rewards provided
by each option. Vs were updated only for the
chosen option, i, based on the prediction error (&t),
which represents the difference between the re-
ward received (rt) and the expected reward value:

&t " rt #Vt(i) (2)

For the Basic RL model, the expected value
for the chosen option (Vi) was then updated
according to the following updating rule:

Vt$1(i)$ ' . & (3)

Learning is modulated by a learning rate pa-
rameter ('), 0 ( ' ( 1 that weighs the degree
to which the model updates the Vs for each
option based on the prediction error (&). As '
approaches 1 greater weight is given to the most
recent rewards in updating Vs, and as ' ap-
proaches 0 recent rewards are given less weight.
The Expanded version of the RL model also

used Equation 3 to update expected values but
the model included separate learning rate pa-
rameters for trials with positive ('pos) and neg-
ative ('neg) prediction errors. The inclusion of
separate learning rate parameters for positive
and negative prediction errors allows the model
to account for participants tendencies to update
expected values at different rates following pos-
itive or negative trends. The Expanded RL mo-
del’s ability to differentially weigh positive and
negative prediction errors echoes prominent
cognitive learning models (e.g., the Expectancy
Valence and Prospect Valence Learning mod-
els; Ahn, Busemeyer, Wagenmakers, & Stout,
2008; Busemeyer & Stout, 2002), which allow
for different weighting of gains versus losses,
and is further supported by biological dissocia-
tion of these weightings (Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007; Frank,
Doll, Oas-Terpstra, & Moreno, 2009).
We also included an autocorrelation term (A)

in both models that accounts for any autocorre-
lation in choices not explained by changes in
reward (Daw, 2011; Lau & Glimcher, 2005).2
The recent selection term for option i is simply
1 if that option was chosen on the previous trial,
and 0 otherwise:

At$1(i)"!1, if at " i
0, otherwise

(4)

This term models the tendency to switch or
stay with the same option regardless of the
payoffs received.

Choice Rule

The probability for selecting each option is
determined by a Softmax rule that includes the

2 See also Otto, Markman, Gureckis, and Love (2010) for
an alternative method of accounting for autocorrelation that
was affected by a manipulation of motivational state.
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value (V), and autocorrelation terms (A) for
each option.

P(at " i)"
e[)v·Vt(i)$)A·At(i)]

" j"1
2 e[)v·Vt(j)$)A·At(j)]

(5)

Here inverse temperature parameters, (v, and
(A, weight the degree to which the value (V)
and autocorrelation terms (A) terms contribute
to each choice.
Model Comparison

The RL models’ fits were assessed based on
their ability to predict each choice a participant
would make on the next trial, by estimating
parameter values that maximized the log-
likelihood of each model given the participant’s
choices. To avoid recovering parameters at lo-
cal minima, we fit each model with 500 random
starting points.
The Basic RL model was nested within the

Expanded RL model as a special case when 'pos
is equivalent to 'neg. Accordingly, we first used
a likelihood ratio test to assess whether the
addition of a second learning rate parameter
significantly improved the fit. The G2 statistic,
which is twice the difference in log-likelihood
between each model follows a )2 distribution,
with df equal to the difference in the number of
free parameters for each model (Maddox &
Ashby, 1993):

G2" 2 · #LLExpanded # LLBasic$ (6)

The G2 (likelihood ratio) test evaluates the
contribution of the additional learning rate pa-
rameter in the Expanded Model (Kovach et al.,
2012; McCullagh & Nelder, 1999).
To compare the Expanded RL model with the

nested Basic RL model within younger and
older adults, we summed the G2 values over all
participants in each group, with df equal to the
number of participants in each group (Daw,
2011; Kovach et al., 2012). The full model
provided a better description than the nested
model within both the consistent rewards (p $
.01, df ! 48) and variable rewards conditions
(p $ .01, df ! 48).
As a second method of comparing the fit of

each model we computed each model’s Bayes-
ian Information Criterion (BIC; Schwarz,
1978):

BIC" #2 · LLModel $ k · In(N) (7)

Here k equals the difference in the number
parameters between the models and N equals
the number of observations. Positive values in-
dicate a better fit for the RL model and negative
values indicate a better fit for the Baseline mod-
el. BIC is one of the more conservative methods
for evaluating models because of its harsher
penalization of models with additional free pa-
rameters compared with other methods like the
likelihood ratio test presented previously (Col-
lins & Frank, 2012; Vrieze, 2012; Wagenmak-
ers & Farrell, 2004).
We also fit a Baseline model that assumed

stochastic responding. This model had one free
parameter that represented participants’ tenden-
cies to select System A on each trial, regardless
of their recent choice history (Yechiam & Buse-
meyer, 2005).
Table 2 lists the average log-likelihood and

BIC values for each model for each group of
participants. Both of the RL models provided a
better fit than the Baseline model for all groups.
The inclusion of an additional learning rate pa-
rameter in the Extended RL model resulted in a
very small improvement in log-likelihood. Av-
erage BIC values were lower for the Basic RL
model than for the Extended RL model for each
group of participants, suggesting that the Ex-
tended model did not provide a significantly
improved fit, according to BIC. Thus, while the
results of the G2 likelihood ratio test indicated
that the addition of a second learning rate pa-
rameter in the Extended RL model significantly
improved the fit, the more conservative BIC
comparison suggested that the improvement in
fit was a modest one.
As a second method of evaluating the ability

of the RL models to account for behavior in the
task, we performed simulations of each task
using participants’ best-fitting parameter esti-
mates. This has become an increasingly com-
mon additional check for how well computa-
tional models account for behavior (e.g.,
Steingroever, Wetzels, & Wagenmakers, 2013;
Worthy, Pang, & Byrne, 2013; Worthy, Haw-
thorne, & Otto, 2013). For both models, we
performed 1,000 simulations for each task for
both older and younger adults by randomly
sampling with replacement a set of parameter
values for each simulation. We then computed
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the points earned in 25-trial blocks in the task
and compared the average points earned by
participants. Figure 3 shows the simulation re-
sults for the Basic (Figure 3a) and Extended
(Figure 3b) RL models for the consistent re-
wards condition and Figure 4 shows the same
results for the variable rewards condition. Both
models are able to simulate performance that is
highly similar to the performance of our partic-
ipants.3 For both models, the simulations pre-
dict better performance for older than for
younger adults in the variable rewards condi-
tion, although both models slightly overpredict
performance for younger adults and underpre-
dict performance for older adults.
As a final test of the RL models we used the

Generalization Criterion Method (Ahn et al.,
2008; Busemeyer & Wang, 2000; Yechiam &
Busemeyer, 2005; Yechiam & Busemeyer,
2008) to assess the ability of each model to
predict behavior in one condition (a generaliza-
tion condition) using parameter estimates from
participants who performed in another condi-
tion (a calibration condition). We had the con-
sistent rewards condition represent the calibra-
tion condition and the variable rewards
condition represent the generalization condi-
tion. Using parameter estimates from the con-
sistent rewards condition, we conducted 1,000

simulations in the variable rewards condition
for each model and for both younger and older
adults. Next we computed the mean squared
error (MSE) between the average points earned
by participants on each trial and the average
points earned across all simulated trials. Lower
values indicate a more reliable prediction for the
amount of points participants earned on each
trial. The MSE values for each model are listed
in Table 3. These values are lower for the Basic
RL model than for the Extended model for both
younger and older adults which suggests param-
eter estimates from the simpler model may be
more reliable as predictors for different tasks.

Best-Fitting Parameter Values

We next examined the estimated parameter
values for younger and older adults. We first
examined differences across both conditions
and then within each condition (Table 4).
Across both conditions a Mann–Whitney U test

3 The decline in cumulative reward during block 4 for
both participants and the models is likely because of the
Advantageous option providing smaller rewards on average
during block 4 (M ! 64.5 units) than in blocks 2 (M ! 67.1
units) and 3 (M ! 68.5 units). Thus, the decline was at least
partially attributable to sampling error in the reward distri-
butions.

Table 2
Average Log-Likelihood and Bayesian Information Criterion (BIC) Values for
Each Reinforcement Learning (RL) Model

Variable Younger adults Older adults

Consistent rewards condition
Log-likelihood
Basic RL model 45.81 (16.04) 41.08 (15.93)
Extended RL model 44.84 (15.59) 40.51 (16.14)
Baseline model 57.71 (12.76) 55.83 (14.03)

BIC
Basic RL model 105.46 (32.08) 95.98 (31.86)
Extended RL model 108.11 (33.18) 99.45 (32.28)
Baseline model 120.02 (25.52) 116.27 (28.08)

Variable rewards condition
Log-likelihood
Basic RL model 38.34 (20.22) 30.99 (19.00)
Extended RL model 36.62 (21.29) 30.16 (18.74)
Baseline model 53.40 (18.49) 49.52 (20.49)

BIC
Basic RL model 90.50 (40.44) 75.79 (38.00)
Extended RL model 91.66 (42.58) 78.75 (37.48)
Baseline model 111.40 (36.98) 103.65 (40.98)

Note. SDs are listed in parentheses.
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revealed a significant difference in ' for the
Basic RL model, U ! 746.00, p $ .01. For the
Extended RL model older adults had signifi-
cantly larger 'pos values than younger adults,
U ! 859.00, p $ .05, and significantly larger
'neg values, U ! 584.50, p $ .001. There were
no age group differences in the value or auto-
correlation inverse temperature parameters (all
p * .10).
Within the consistent rewards Condition

Mann–Whitney U tests revealed a significant
difference between groups in ' for the Basic RL
model, U ! 165.50, p $ .05. For the Extended
RL model older adults had significantly larger
'neg values than younger adults, U ! 135.00,
p $ .01, suggesting that recent negative events
exerted greater influence on this group’s choic-
es. However, while older adults’ data were also
best fit by larger 'pos values, the difference was
not reliable, U ! 200.00, p ! .052.
Within the variable rewards condition older

adults’ data were best fit by larger ' values
for the Basic RL model, although the differ-
ence did not reach significance, U ! 212.00,
p ! .115. For the Extended RL model there
was no age difference in estimated 'pos val-
ues, U ! 226.00, p ! .182, but there was a

significant age difference in estimated 'neg
values, U ! 151.50, p$.01. We also exam-
ined whether larger estimated 'neg values
predicted better performance in this condi-
tion. A simultaneous regression with all four
of the parameters for the Extended RL model
entered as predictors and total cumulative
points entered as the outcome variable re-
vealed that estimated 'neg values predicted
better performance on the task, ( ! .34, p $
.05. However, there was no relationship be-
tween 'pos values and performance, ( ! .11,
p ! .53.

Prediction Errors Preceding Stay and
Switch Trials

Next we examined prediction errors (&) on
trials that preceded “stay” and “switch” trials to
examine responsiveness to recent events, cor-
roborating the results of the modeling analysis.
Because the Basic RL model provided a better
fit to the data based on the more conservative
BIC criterion and based on the results of the
Generalization Criterion method test, we used
the average best-fitting ' value from the Basic
RL model across both age groups to update

Figure 3. (a) Simulation results for the Basic Reinforcement Learning (RL) model in the
consistent rewards condition. (b) Simulation results for the Extended RL model in the
consistent rewards condition. Error bars represent 95% confidence intervals.

Figure 4. (a) Simulation results for the Basic Reinforcement Learning (RL) model in the
variable rewards condition. (b) Simulation results for the Extended RL model in the variable
rewards condition. Error bars represent 95% confidence intervals.
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expected values. Prediction errors were com-
puted as in Equation 2.4 Intuitively, a decision-
maker sensitive to recent negative events would
be more likely to switch from selecting a cur-
rently favored option after observing large neg-
ative prediction errors. To test this possibility,
we assessed whether average prediction errors
differed between groups on stay and switch
trials.
Figure 5 depicts the average prediction errors

on stay and switch trials for the option that was
chosen on the previous trial. A 2 (age) # 2
(condition) # 2 (trial-type) repeated measures
ANOVA showed a main effect of trial-type,
F(1, 92) ! 63.51, p $ .001, %2 ! .408, a
significant effect of age, F(1, 92) ! 15.31, p $
.001, %2 ! .143, and a Significant age # Trial-
type interaction, F(1, 92)! 9.98, p $ .01, %2 !
.098. There was no difference between age
groups in average prediction errors on trials that
preceded stay trials, t(94) ! .76, p ! .45, but
average prediction errors on trials preceding
switch trials differed significantly between
groups, t(94) ! "3.65, p $ .001. Prediction
errors for trials preceding switch trials were
significantly larger in magnitude for older
adults (M ! "5.71, SD ! 4.97) than for
younger adults (M ! "2.26, SD ! 4.28). The
age difference was significant within both the
consistent rewards condition, t(46) ! "3.29,
p $ .01, and the variable rewards condition,
t(46) ! "2.05, p $ .05.

Discussion

Our results provide support for the hypothe-
sis that older adults’ choice behavior is more
responsive to recent events than that of younger
adults. Despite no age-group differences in the
proportion of times participants selected each
option, older adults performed better in the vari-
able rewards condition, where switching fol-
lowing steep declines in reward was advanta-

geous. The computational modeling and
average prediction error analyses revealed fur-
ther evidence of age-based differences in re-
sponses to recent events during decision-
making. Older adults utilized recent reward
information to a significantly greater extent than
younger adults in evaluating each option. These
differences were most noticeable following
large negative decreases in rewards, where
older adults tended to shift immediately to the
other option, while younger adults’ switches
were not related to as steep of declines in re-
ward.
There is emerging evidence that older adults

learn more from negative than from positive
feedback during learning and decision-making
(Eppinger et al., 2011; Eppinger & Kray, 2011;
Frank & Kong, 2008; Hämmerer et al., 2011;
Simon et al., 2010). Our results suggest that this
focus on negative feedback extends to relative
declines in reward magnitudes in addition to
binary feedback (e.g., incorrect vs. correct, or
loss vs. no loss). However, it is important to
note that our modeling results suggest that older
adults were more sensitive negative trends over-
all, regardless of the valence.
However, changes in responsiveness to pos-

itive versus negative information that accom-
pany healthy aging has been the source of some
debate, with evidence of reduced brain activity
in older adults in regions implicated in reward-
based decision making when anticipating mon-
etary losses, but not when anticipating monetary
gains (Samanez-Larkin et al., 2007). Other
work has found evidence for heightened antic-
ipatory skin-conductance responses in high-
performing older adults when selecting the ad-
vantageous options, which have net positive
outcomes over trials, during the Iowa Gambling
Task (Denburg, Tranel, & Bechara, 2005;
Wood et al., 2005). In addition, a prominent
theory of how aging affects socioemotional
functioning suggests that older adults focus on
positive rather than negative cues in their envi-
ronment (Carstensen, 1992). One explanation
for these conflicting findings is that older adults
may focus more on the positive aspects of their
decisions when anticipating the outcomes, but

4 We also conducted the same analysis using several
different values for ' and the same general pattern shown in
Figure 5 was observed regardless of what the ' value was.

Table 3
Mean Squared Error (MSE) Values From the
Generalization Criterion Method

Model Younger adults Older adults

Basic RL 7.14 8.69
Extended RL 11.60 9.52

Note. RL ! Reinforcement Learning.
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focus more on negative information when pro-
cessing feedback or evaluating the outcomes of
their decisions (Eppinger et al., 2011; Eppinger,
Kray, Mock, & Mecklinger, 2008).
In addition, these results are not necessarily

inconsistent with the extensive evidence for the
“positivity effect” in older adults, whereby they
engage in emotion regulation mechanisms to
enhance memories for positive information and
diminish memories for negative information
(Mather & Carstensen, 2005). One interpreta-
tion of our finding that older adults tend to shift
to a different option following sharp drops in

reward is that older adults have a heightened
tendency to avoid the possibility of selecting an
option that is declining in value. This may be
related to their tendency for stronger regulation
against negative information.
While the present results reveal that older

adults are more sensitive to recent negative
events, future work is needed to pinpoint pos-
sible mechanisms underlying this apparent age
difference. One prominent neurobiological the-
ory proposes that the enhanced responsivity to
negative feedback in older adults is at least
partially because of age-related declines in do-
pamine levels, which enhance learning from
negative outcomes (Frank & Kong, 2008). In
addition, working memory impairments are
known to accompany older age, which may be
responsible for older adults’ reliance on more
recent reward outcomes (Rypma & D’Esposito,
2000). However, our study did not directly ad-
dress the link between working memory and
decision-making behavior. Future work could
examine this relationship and whether certain
experimental manipulations might decrease
older adults’ reliance on recent information.

Table 4
Average Best-Fitting Parameter Values for Each Reinforcement Learning
(RL) Model

Variable Younger adults Older adults

Consistent rewards condition
Basic RL model
Learning rate (') .48 (.43)! .73 (.36)!
Value inverse temperature ((v) 2.12 (4.02)! .12 (.15)!
Autocorrelation inverse temperature ((A) .45 (1.06) .63 (.96)

Extended RL model
Positive learning rate ('pos) .55 (.48) .74 (.42)
Negative learning rate ('neg) .32 (.41)! .61 (.41)!
Value inverse temperature ((v) 3.38 (4.53)! 1.12 (2.91)!
Autocorrelation inverse temperature ((A) .47 (1.10) .63 (1.02)

Variable rewards condition
Basic RL model
Learning rate (') .45 (.37) .63 (.45)
Value inverse temperature ((v) 1.63 (3.55) 1.22 (3.01)
Autocorrelation inverse temperature ((A) .74 (2.36) .56 (2.21)

Extended RL model
Positive learning rate ('pos) .54 (.44) .70 (.40)
Negative learning rate ('neg) .33 (.39)!! .65 (.38)!!

Value inverse temperature ((v) 2.14 (3.90) .80 (2.35)
Autocorrelation inverse temperature (A) .12 (2.46) .32 (2.37)

Note. SDs are listed in parentheses.
! Significant age group difference at p$ .05 level. !! Significant age group difference at p$
.01 level.

Figure 5. Average prediction errors on trials that preceded
stay and switch trials. Error bars represent SEMs.
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This work also highlights the importance of
applying computational models to behavioral
data, particularly for special populations (e.g.,
Busemeyer & Stout, 2002; Yechiam, Busemeyer,
Stout, & Bechara, 2005). Decision-making is a
complex task and gross measures of performance
are often inadequate for providing a full account
of behavior. We found that utilization of a Basic
RL model, combined with more nuanced behav-
ioral metrics uncovered a robust age-related dif-
ference in responsivity to recent events.
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