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SI Text
Reinforcement Learning Model. The task consists of three states
(first stage: sA; second stage: sB and sC), each with two actions (aA
and aB). The hybrid model consists of model-based and model-
free subcomponents, both of which estimate a state-action value
function QMFðs; aÞ (model-free) and QMBðs; aÞ (model-based)
that maps each state-action pair to its expected future reward.
On trial t, we denote the first-stage state (always sA) by s1,t, the
second-stage state by s2,t, the chosen first- and second-stage ac-
tions by a1,t and a2,t, and the first- and second-stage rewards as r1,t
(always zero) and r2,t.
Model-free component. For the model-free algorithm, we used
State-Action-Reward-State-Action, SARSA(λ), temporal differ-
ence (TD) learning (1), which updates the value for the visited
state-action pair at each stage i and trial t according to
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is the reward prediction error (RPE), and α is a learning rate
parameter. For the first-stage choice, r1;t = 0 and the RPE is
driven by the second-stage value, QMFðs2;t; a2;tÞ; conversely, at
the second stage, we define QMFðs3;t; a3;tÞ= 0, because there is
no further value in the trial apart from the immediate reward r2;t.
Here we have rescaled the leading term in the reward prediction
error by 1=α, relative to its usual definition (2, 3). Because this
simply rescales the units of the Q values (by 1=α2 and 1=α at the
first and second stage, respectively), the same data likelihoods
are maintained via a corresponding rescaling of the first- and
second-level inverse temperatures βMF and β2 in the choice rule
below. This slight reparameterization facilitates group-level
modeling by reducing the correlation of the β s with α.
The model uses an eligibility trace to propagate second-stage

reward information to the first-stage values. Specifically, at the
end of each trial, the first-stage values are updated according to
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where λ is an eligibility trace decay parameter (4), and the omis-
sion of α (which would normally appear in this equation) again
results from rescaling the update to match the scaling implied by
the prediction error above. We assume that eligibility traces are
reset to 0 between episodes (i.e., that eligibility does not carry
over from trial to trial).
Additionally, at the end of each trial, we decayed the Q values

for all of the nonchosen actions by multiplying them by 1− α (5,

6). This decay makes the present model correspond more closely
to the one-trial-back regression model described in the main
text, in the limit as α→ 1.

Model-based component. In general, a model-based reinforcement
learning (RL) algorithm works by learning a transition function
(mapping state-action pairs to a probability distribution over the
subsequent state), and immediate reward values for each state,
then computing cumulative state-action values by iterative ex-
pectation over these. Specialized to the structure of the current
task, this amounts to, first, simply deciding which first-stage action
maps towhich second-stage state (because subjectswere instructed
that this was the structure of the transition contingencies), and
second, learning immediate reward values for each of the second-
stage actions (the immediate rewards at the first stage being
always zero).
Following ref. 7, we modeled transition learning by as-

suming subjects simply chose between the two possibilities:
PðsBjsA; aAÞ= 0:7, PðsCjsA; aBÞ= 0:7, or vice versa, PðsBjsA; aAÞ=
0:3, PðsCjsA; aBÞ= 0:3, with PðsBjsA; aBÞ= 1−PðsBjsA; aAÞ and
PðsCjsA; aAÞ= 1−PðsCjsA; aBÞ, according to whether more
transitions had thus far occurred to sB following aA plus sC fol-
lowing aB, or vice versa to sC following aA plus sB following aB.
At the second stage (the only one where immediate rewards

were offered), the problem of learning immediate rewards is
equivalent to that for TD above, because QTDðs2;t; a2;tÞ is just an
estimate of the immediate reward r2,t; with no further stages to
anticipate, and the SARSA learning rule reduces to a delta
rule for predicting the immediate reward. Thus, the two ap-
proaches coincide at the second stage, and we define QMB =QTD
at those states.
Finally the top level model-based values are defined from the

transition and reward estimates using the Bellman Equation (8):
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where we have assumed these are recomputed at each trial
from the current estimates of the transition probabilities
and rewards.
Choice rule. Finally, to connect the values to choices, we use
a softmax choice rule, which assigns a probability to each action
according to the combination of both QMB and QMF, each
weighted with a separate inverse temperature parameter, and
βMB and βMF , which allow the two values to combine indepen-
dently in determining first-stage choice. (Note that this is alge-
braically equivalent to the formulation used in ref. 7, under the
substitution βMB =wβ and βMF = ð1−wÞβ. This change of varia-
bles again facilitates group level modeling of individual differ-
ences in the influence of either system.
The probability of a choice at the first stage is calculated,

accordingly, as

The indicator function repðaÞ is defined as 1 if a is a top-stage
action and is the same one as was chosen on the previous trial,
zero otherwise. Together with the “stickiness” parameter p, this
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captures first-order perseveration (p > 0) or switching (p < 0) in
the first-stage choices. Second-stage choices are modeled with an
analogous but simpler softmax rule, with only a single value term
QMFðs2;t; aÞ, with its own inverse temperature β2 and omitting the
repðaÞ term.
Group-level modeling. The foregoing describes the modeling of a
single subject’s data. This model was embedded within a multi-
level random effects model to estimate it for all subjects simul-
taneously. All of the free parameters of the model (α, λ, βMB,
βMF , β2, p) were taken as random effects, instantiated separately
for each subject s from a common group level distribution. For
parameters with infinite support, the group level distributions
were Gaussian with free mean and SD

β2s ∼ N
�
μβ2; σβ2

�
;

and similarly for ps. To test the dependence of the model-based
and model-free effects on cortisol and Operation Span (OSPAN),
these effects and their interaction were entered into a regression
at the group level

βMBs
∼N

h
μβMB + βMBcortcortðsÞ+ βMBospanospanðsÞ

+ βMBcxocortðsÞ · ospanðsÞ
i
;

and similarly for βMFs
. Accordingly, nonzero values of the slopes

βMBcort, βMBospan, and βMBcxo signify correlations between cortisol
delta, OSPAN, and the interaction between the two, analogous
to the covariate effects tested in the logistic regression in the
main text.
The parameters with support in ½0; 1� were assumed to be

drawn from a group-level beta distribution

αs ∼ BetaðAα;BαÞ

and similarly for λs.
Finally, we estimated the parameters of the group level dis-

tributions (μβ2, etc.) using uninformative priors: for all means,
the broad Gaussian Nð0; 100Þ, for all SDs, the heavy-tailed
Cauchyð0; 2:5Þ. Finally, our priors for the A and B parameters of
the beta distributions were given using a change of variables that
characterizes the distribution’s mean M = A

A+B and spread
S= 1ffiffiffiffiffiffiffi

a+ b
p , the latter approximating its SD. This allowed us to

take as uninformative hyperpriors the uniform distributions
M ∼Uð0; 1Þ and S∼Uð0;∞Þ (the latter improper) (9).
Estimation. We estimated the joint distribution of the parameters
of the model, conditional on all subjects’ observed choices and
rewards. For this, we used Markov Chain Monte Carlo (MCMC)
techniques (specifically the No-U-Turn variant of Hamiltonian
Monte Carlo) as implemented in the Stan modeling language
(10). Given a probabilistic generative model (the above equa-
tions) and a subset of observed variables, MCMC techniques
provide samples from the conditional joint distribution over the
remaining random variables. We ran four chains of 2,000 samples
each, discarding the first 1,000 samples of each chain for burn-in.
We examined the chains visually for convergence and also com-
puted Gelman and Rubin’s (11) potential scale reduction factors.
For this, large values indicate convergence problems, whereas
values near 1 are consistent with convergence. We ensured that
these diagnostics were less than 1.1 for all variables.
Results.Table S2 reports the free parameters of the model by their
group-level means and variances over individual subjects. Also
reported are the regression slopes estimating how individuals’
parameter settings covaried with cortisol deltas, OSPAN scores,
or their interaction. This uncertainty is reported via quartiles: the
median and 25th and 75th percentiles of the distribution. Of
note, the group-level mean α was centered on 0.34, characteristic

of a more gradual (and thus, less recency driven) learning process
than is ascribed by the regression analysis in the main text, which
assumes a learning rate of 1 (that is, only the most recent trial
influences choice), supporting the conclusion that our reported
effects apply to longer-term incremental learning, and are not
limited to short-term patterns of win-stay-lose-shift adjustments.

RegressionAnalysis.We specified amixed-effects logistic regression
to explain the first-stage choice on each trial t (coded as stay vs.
switch) using binary predictors indicating if reward was received
on t-1 and the transition type (common or rare) that had pro-
duced it. Logistic regressions were conducted as mixed-effects
models, performed using the lme4 package (12) in the R pro-
gramming language. Within-subject factors (the intercept, main
effects of reward and transition, and their interaction) were taken
as random effects across subjects, and estimates and statistics
reported are at the population level. Individual model-based and
model-free effect sizes (the model-based and model-free indices
used in Figs. S1 and S2) were calculated from posterior estimates,
conditional on the estimated top-level effects. Planned contrasts
were conducted using the esticon function (package doBy) (13)
on the estimated model.
As an initial examination, we estimated a model that included

both experimental condition (stress v.s control) and cortisol delta
as between subjects-factors (Table S3). Statistically, we found
a significant negative interaction between cortisol response
(quantified by cortisol delta; Materials and Methods), previous
reward, and transition type (P < 0.01), confirming that cortisol
response effectively attenuated the model-based signature of
choice. Experimental condition (stress vs. control), however, did
not exert significant influence on choice-related variables, nor
did it significantly interact with the interaction between cortisol
response and these trial-by-trial variables. That cortisol response
yields greater explanatory leverage on behavior than experimental
condition mirrors the results of recent examinations of stress and
decision-making (14, 15). A separate regression, excluding con-
dition, is reported in Table 2. Further, this regression confirmed
that cortisol response did not influence the simple effect of pre-
vious reward—the hallmark of model-free learning (P > 0.5).
Moreover, the effect of cortisol response on model-based con-
tributions trended larger than model-free contributions (linear
contrast between the reward effect and the reward × transition
interaction, P = 0.07), positively demonstrating the selectivity
of the effect to model-based RL and suggesting that cortisol
response does not merely bring about a generalized decline in
performance.
To visualize the relationship between cortisol response andmodel-

based contribution to behavior analogously to the computational
model weights, we computed for each subject a model-based index
(the individual’s coefficient estimate for the previous reward ×
transition type interaction as in Fig. 5A, the marker of model-based
updating). Fig. S1A plots the model-based index as a function of
cortisol response and condition, suggesting that the model-based
contribution to choice decreased as a function of cortisol increase.
Plotting the model-free index, an individual measure of the model-
free contribution to choice (the coefficient for the main effect of the
previous trial’s reward on choice), as a function of cortisol response
and condition revealed no apparent attenuation of model-free
choice by cortisol response or condition (Fig. S1B).
We applied the same analysis approach to examine how individual

working-memory (WM) capacity—operationalized by OSPAN—
modulates the effect of cortisol response on model-based choice.
Accordingly, we examined this relationship with a logistic model
examining how cortisol delta and OSPAN interacted with the
same trial-by-trial variables in the above analysis (previous re-
ward and transition type; see Table S4 for full model specifica-
tion and coefficient estimates). Critically, OSPAN significantly
interacted with the three-way interaction between cortisol re-
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sponse, previous reward, and previous transition type (the in-
teraction signifying cortisol response’s effect on model-based
choice, P < 0.01). This relationship is visualized in Fig. S2,
analogous to Fig. 4: among subjects low in WM capacity, cortisol

delta reduced the expression of model-based choice (Fig. 4A),
but among subjects high in WM capacity, cortisol response did
not produce an appreciable impact on model-based con-
tributions to behavior (Fig. 4B).
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Fig. S1. Effect of cortisol response on model-based vs. model-free behavioral contributions. (A) Individual subjects’ model-based effect sizes (arbitrary units)
conditional on the group-level mixed-effects logistic regression, plotted separately for subjects in the control and stress conditions. The regression line is
computed from the group-level log-linear effect of cortisol delta. There was a significant negative effect of cortisol delta on expression of model-based choice
(P < 0.05), indicating cortisol change diminished its behavioral expression. (B) Subject-level effect-sizes for the model-free contribution to behavior. Note that
there was no significant effect of cortisol change on expression of model-free choice (P = 0.54), indicating that expression of model-free contribution is spared.
Dashed gray lines indicate 2 SEs, estimated from the group-level mixed effects regression.
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Fig. S2. Effect of cortisol response on expression of model-based behavior as a function of individual WM capacity as measured by OSPAN. Individual subjects’
model-based effect sizes (arbitrary units) are plotted for low OSPAN subjects (A) and high OSPAN subjects (B). Cortisol response markedly dampened expression
of model-based choice in the low OSPAN subgroup but not in the high OSPAN subgroup. Regression lines are computed from the group-level log-linear effect
of cortisol delta for each subgroup. Dashed lines indicate 2 SEs, estimated from the group-level mixed effects regression.
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Table S1. Mean cortisol response by group and sample time

Condition

Sample

t1 (baseline) t2 (post-OSPAN) t3 (post-CPT) t4 (post-RL task)

Control (n = 28) 6.03 (3.08) 5.42 (2.47) 4.79 (2.31) 4.64 (2.65)
Stress (n = 20) 5.09 (3.54) 5.20 (3.01) 9.06 (6.49) 11.20 (13.26)

Salivary concentrations reported in nmol/L and are non–log transformed for interpretability.

Table S2. Group level estimates for the free parameters of the
RL model and estimated slopes for the covariates

Percentile

Group-level means

βMB βMF p β2 λ α

25 0.252 0.642 1.294 1.345 0.964 0.32
50 0.313 0.693 1.406 1.404 0.978 0.341
75 0.37 0.757 1.511 1.475 0.989 0.362

Group-level variances

βMB βMF p β2 λ α

25 0.389 0.458 0.922 0.590 0.016 0.193
50 0.436 0.504 0.996 0.643 0.038 0.206
75 0.496 0.554 1.077 0.711 0.069 0.221

Covariate slopes

βMBcort βMBospan βMBcxo βMFcort βMFospan βMFcxo

25 −0.285 0.051 0.318 −0.05 −0.061 −0.058
50 −0.226 0.113 0.42 0.007 −0.001 0.021
75 −0.163 0.17 0.525 0.063 0.062 0.108

For each parameter, the median posterior estimate is given, together
with the quartiles of the posterior distribution. Note that the quartiles rep-
resent the width of uncertainty about the parameters’ values (analogous to
SEM), whereas the variances are estimates of the variability in the parameter
estimates across the group of subjects.

Table S3. Logistic regression coefficients indicating the
influence of cortisol response, stress condition, outcome of
previous trial, and transition type of previous trial, on response
repetition

Coefficient Estimate (SE) P value

(Intercept) 1.76 (0.20) <0.0001*
Reward 0.72 (0.10) <0.0001*
Transition 0.08 (0.07) 0.291
Cortisol delta 0.17 (0.33) 0.927
Condition −0.11 (0.18) 0.690
Reward × transition 0.28 (0.07) 0.002*
Cortisol delta × reward 0.10 (0.18) 0.946
Cortisol delta × transition 0.02 (0.13) 0.170
Condition × reward −0.09 (0.10) 0.702
Transition × cortisol delta 0.03 (0.07) 0.867
Condition × cortisol delta 0.20 (0.33) 0.391
Cortisol delta × reward × transition −0.37 (0.13) 0.006*
Condition × reward × transition 0.11 (0.07) 0.321
Condition × cortisol delta × reward 0.18 (0.18) 0.314
Condition × cortisol delta × transition 0.06 (0.13) 0.347
Condition × cortisol delta ×

reward × transition
0.11 (0.13) 0.245

Critically, the cortisol delta × reward × transition was significant in the
negative direction, indicating that cortisol response tempered model-based
contribution to choice.
*Significance at the 0.05 level.
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Table S4. Logistic regression coefficients indicating the
influence of Operation Span (OSPAN) cortisol response, outcome
of previous trial, and transition type of previous trial, on
response repetition

Coefficient Estimate (SE) P value

(Intercept) 1.87 (0.17) <0.0001*
Reward 0.77 (0.09) <0.0001*
Transition 0.01 (0.05) 0.885
Cortisol delta 0.00 (0.16) 0.994
OSPAN 0.21 (0.17) 0.226
Reward × transition 0.20 (0.06) <0.0001*
Cortisol delta × reward 0.03 (0.09) 0.734
Cortisol delta × transition −0.08 (0.05) 0.090
OSPAN × reward 0.08 (0.09) 0.392
Transition × cortisol delta 0.08 (0.04) 0.084
OSPAN × cortisol delta −0.12 (0.24) 0.633
Cortisol delta × reward × transition −0.17 (0.06) 0.004*
OSPAN × reward × transition 0.09 (0.06) 0.099
OSPAN × cortisol delta × reward 0.06 (0.13) 0.619
OSPAN × cortisol delta × transition 0.35 (0.07) <0.0001*
OSPAN × cortisol delta ×

reward × transition
0.23 (0.09) 0.009*

*Significance at the 0.05 level.
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