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A B S T R A C T   

Emerging evidence suggests that Alzheimer’s Disease (AD) risk factors may differentially contribute to disease 
trajectory in women than men. Determining the effect of AD risk factors on brain aging in women, compared to 
men, is critical for understanding whether there are sex differences in the pathways towards AD in cognitively 
intact but at-risk adults. Brain Age Gap (BAG) is a concept used increasingly as a measure of brain health; BAG is 
defined as the difference between predicted age (based on structural MRI) and chronological age, with negative 
values reflecting preserved brain health with age. Using BAG, we investigated whether there were sex differences 
in the brain effects of AD risk factors (i.e., family history of AD, and carrying an apolipoprotein E ε4 allele 
[+APOE4]) in cognitively intact adults, and if this relationship was moderated by modifiable factors (i.e. body 
mass index [BMI], blood pressure and physical activity). We undertook a cross-sectional study of structural MRIs 
from 1067 cognitively normal adults across four neuroimaging datasets. An elastic net regression model found 
that women with a family history of AD and +APOE4 genotype had more advanced brain aging than their male 
counterparts. In a sub-cohort of women with those risk factors, higher BMI was associated with less brain aging 
whereas lower BMI was not. In a sub-cohort of women and men with +APOE4, engaging in physical activity was 
more beneficial to men’s brain aging than women’s. Our results demonstrate that AD risk factors are associated 
with greater brain aging in women than men, although there may be more unexplored modifiable factors that 
influence this relationship. These findings suggest that the complex interplay between unmodifiable and 
modifiable AD risk factors can potentially protect against brain aging in women and men.   

1. Introduction 

Women represent two-thirds of the cases of late-onset Alzheimer’s 
Disease (AD; Alzheimer’s Association, 2019; Bailly et al., 2019; Mielke 
et al., 2014; Nebel et al., 2018; Schmidt et al., 2008). Indeed, female 
biological sex constitutes a risk to AD, after accounting for sex differ
ences in longevity (Buckley et al., 2019; Prince et al., 2016). Moreover, 
women with an apolipoprotein E ε4 allele (+APOE4 genotype) exhibit 
greater AD pathology than men, particularly in relation to tau pathology 
(Buckley et al., 2019; Hohman et al., 2018; Ramanan et al., 2019), 
demonstrating that this genetic risk factor confers greater AD risk in 

women, compared to men (Altmann et al., 2014; Breitner et al., 1999; 
Bretsky et al., 1999; Farrer et al., 1997; Mortensen and Hogh, 2001; 
Payami et al., 1996). 

More sensitive measures for detecting early signs of AD in individuals 
at risk of the disease are actively investigated. One such measure is an 
individual’s brain age gap (BAG), defined as the difference between 
predicted brain age and chronological age. Brain age is derived from a 
prediction model that estimates a participant’s ‘brain age’ from their 
individual MRI data (Franke and Gaser, 2019). Thus, BAG is a neuro
imaging marker of brain health, representing how much an individual 
varies from a normative aging trajectory. A negative BAG reflects 
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preserved brain health in the face of aging and is associated with higher 
educational attainment (Steffener et al., 2016), and healthy lifestyle 
factors, such as physical activity (Steffener et al., 2016) and meditation 
(Luders et al., 2016). Conversely, a positive BAG reflects decrements in 
brain health in the face of aging and is associated with poorer physical 
fitness (Cole et al., 2018), diabetes (Franke et al., 2013), and increased 
mortality risk (Cole et al., 2018). A positive BAG is also linked with 
dementia, in that some studies show that BAG is a more accurate pre
dictor of conversion from Mild Cognitive Impairment (MCI) to AD than 
other traditional metrics, including cognitive scales and CSF biomarkers 
(Gaser et al., 2013; Löwe et al., 2016). One study associated higher 
baseline BAG with greater risk of AD conversion, independent of APOE 
status (Löwe et al., 2016). Therefore, there is growing evidence for the 
predictive power of BAG for conversion to AD. However, to our 
knowledge no study to date has explicitly examined the effect of sex on 
BAG, and its interaction with AD risk factors (i.e., family history of AD 
[+FH], and +APOE4 genotype). 

In the current study, we used MRIs to train a regularized (Elastic Net) 
regression model to predict age from brain structure in a cognitively 
normal cohort. The regularization technique employed mitigates against 
overfitting and is robust to extreme correlations among predictor vari
ables (Friedman et al., 2010; Kragel et al., 2012). One recent study 
demonstrated that compared to other prediction models (e.g., Random 
Forest, Kernel Ridge Regression) across many cohort and feature sizes, 
the elastic net model was the most flexible and accurate regression 
technique for neuroimaging data (Jollans et al., 2019). Further, elastic 
net models have also been shown to have comparable performance to 
relevance vector regressions, another commonly used model in pre
dicting age from MRI data (Jonsson et al., 2019; Lee et al., 2020). 

Since we do not know exactly when AD-related changes occur, 
particularly in a cognitively normal healthy cohort, we used data to 
capture the entire adult lifespan. Aging studies typically model partici
pants across the adult lifespan particularly since older adulthood might 
not capture slight but significant differences happening earlier on in 
midlife, a life stage that has received little attention (Madan, 2017) but 
is becoming increasingly important to investigate since AD-related 
changes can start as soon as midlife or earlier in younger adulthood 
(Reiman et al., 2004; Ritchie et al., 2015; Rajah et al., 2017). In addition, 
the lifelong presence of +FH or APOE risk factors justified our inclusion 
of participants from young to older adulthood so that our prediction 
model would be sensitive to age-related differences throughout the adult 
lifespan. Since we do not know exactly when AD-related changes occur, 
particularly in a cognitively normal healthy cohort, a model that reflects 
the adult lifespan would therefore make no a priori assumptions of when 
the consequences of AD risk factors may emerge throughout the lifespan. 

We applied this trained model to MRIs in a separate cohort of 
cognitively normal adults with a known (FH+) and unknown (uFH) 
family history of AD to predict participants’ brain age. We tested for sex 
differences in the effect of FH status and APOE genotype on BAG. We 
hypothesized that AD risk factors (e.g., FH+ and +APOE4) would 
contribute to a more positive BAG (i.e., advanced brain aging relative to 
the expected age-normative trajectory) in women, compared to men. We 
conducted secondary analyses to determine if cardiovascular and 

lifestyle (modifiable) factors (i.e., BMI, Blood Pressure, and Physical 
Activity) moderated the effect of AD risk factors on BAG in women, 
compared to men. We hypothesized that a healthy BMI and greater 
physical activity would be associated with a more negative BAG. This is 
the first study to date to consider whether biological sex modulates the 
association between AD unmodifiable risk factors (i.e., FH+ and APOE- 
e4) and BAG. 

2. Material and methods 

2.1. Datasets 

T1-weighted (T1w) MRIs were used from four neuroimaging data
sets: Dallas Lifespan Brain Study (DLBS), South Asian Lifespan Dataset 
(SALD), Montreal Memory and Aging Lifespan Study (MMALS), and Pre- 
symptomatic Evaluation of Experimental or Novel Treatments for Alz
heimer’s Disease (PREVENT-AD). We used open-access datasets when 
possible because they allowed us to use large cohort sizes for the train 
and test sets, which yields greater model accuracy (Jollan et al., 2019). 
We chose these four neuroimaging datasets specifically because they 
represent a cognitively healthy and well-educated cohort of participants 
across the adult lifespan. Since the prevalence of women with AD varies 
slightly according to geography (Rizzi et al., 2014), it was also important 
that we pick datasets across diverse geographic locations (Canada, USA, 
China) to reflect this variation in AD risk. Finally, the MMALS and 
PREVENT-AD datasets have information about the FH and APOE status 
of participants. Both these datasets were also collected at the Douglas 
Mental Health University Institute (Montreal) so there would be no 
differences in scanning site in the post-hoc analyses that were conducted 
on these specific datasets. 

Sex was determined by self-report in the MMALS and PREVENT-AD 
cohorts, but the method of assessment was not indicated for the DLBS 
and SALD cohorts. The total cross-sectional lifespan cohort after mini
mal quality control (QC) consisted of 1067 cognitively healthy adults 
(18–89 years old; 697 females, 370 males). In the unknown FH (uFH) 
cohort, datasets either included participants with a known negative 
family history of AD (MMALS) or unreported FH Status (DLBS, SALD), 
with mixed APOE status. A positive family history of AD (i.e., +FH) was 
defined as a parental or multiple sibling history of late onset sporadic AD 
(Tremblay-Mercier et al., 2020; Rajah et al., 2017 for more details). FH 
status was obtained using the Cache County Study questionnaire (Hay
den et al., 2009; Tschanz et al., 2006). APOE status for three datasets 
(DLBS, MMALS, PREVENT-AD) was determined through genotyping of 
venous blood samples (see Supplementary Table 1 for detailed infor
mation on genotyping procedures). 

We randomly selected 70% of uFH participants to train the age- 
prediction model, while the remaining 30% of the uFH cohort were 
combined with the +FH cohorts from the PREVENT-AD and MMALS 
cohorts to test the age-prediction model. The model was trained on a 
uFH cohort so that model-estimated predictive effects would be 
computed relative to the uFH healthy aging trajectory, while the test set 
contained both the uFH and +FH participants so that we could directly 
estimate the effect of +FH status on BAG. See Table 1 for summary of 

Table 1 
Demographic details of the train and test sets.   

Train Test 1: uFH* Test 2: +FH 

n 596 251 220 
Age 47.39 (18.46) 47.50 (19.15) 61.53 (6.04) 
Sex 218 (37%) M, 378 (63%) F 90 (36%) M, 161 (64%) F 62 (28%) M, 158 (72%) F 
Age Group 224 (38%) YA, 186 (31%) MA, 186 (31%) OA 95 (38%) YA, 78 (31%) MA, 78 (31%) OA 73 (33%) MA, 147 (67%) OA 
TIV (cm3) 1056.83 (103.81) 1047.50 (108.44) 1011.75 (95.31) 
Age Group: Male 72 OA, 60 MA, 84 YA 30 OA, 25 MA, 35 YA 46 OA, 16 MA 
Age Group: Female 114 OA, 126 MA, 140 YA 48 OA, 53 MA, 50 YA 101 OA, 57 MA 

TIV = Total Intracranial Volume; M = Male, F = Female, YA = Younger Adult (19–39 years), MA = Middle-aged (40–59 years), OA = Older Adult (60–89 years). Values 
in brackets are in standard deviation. *The uFH cohort comprise of three datasets with reported negative FH Status (MMALS) or unreported FH Status (DLBS, SALD). 

S. Subramaniapillai et al.                                                                                                                                                                                                                     



NeuroImage: Clinical 30 (2021) 102620

3

participant demographics in the train and test sets (see Supplementary 
Appendix and Supplementary Table 2 for participant demographics and 
MRI parameters for each dataset). 

The DLBS cohort (Dallas, USA) consisted of 275 healthy adults 
(21–89 years; 175 females, 100 males). The SALD cohort (Chonqing, 
China) is publicly available data (Wei et al., 2018), which consisted of 
433 participants (19–80 years; 272 females, 161 males). Data from DLBS 
(http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html) and SALD 
(http://fcon_1000.projects.nitrc.org/indi/retro/sald.html) cohorts were 
made available by International Neuroimaging Data-sharing Initiative 

(Mennes et al., 2013) and hosted on Neuroimaging Informatics Tools 
and Resources Clearinghouse (Kennedy et al., 2016). The MMALS cohort 
(Montréal, Canada) was collected in Dr. Rajah’s lab (Ankudowich et al., 
2016 for further details), and consisted of 169 participants (19–76 years; 
116 females, 53 males). Thirty participants from the MMALS cohort 
were known to have a +FH for AD (43–58 years; 24 females, 6 males) so 
were only used in the test set. The MRI dataset is not currently openly 
available due to Institutional Ethics Regulations, but the demographics 
data are available (https://github.com/sivaniya/brain_age). The study 
protocol for the MMALS cohort was approved by the ethics board at the 

Table 2 
Detailed demographic details of the full cohort.  

FULL COHORT (n = 1067) DLBS SALD MMALS PREVENT-AD 

n 275 433 169 190 
Age 53.30 (19.86) 43.81 (17.23) 47.87 (16.20) 63.10 (4.60) 

Men 53.59 (20.02) 44.70 (17.67) 45.81 (17.32) 63.61 (5.03) 
Women 53.13 (19.82) 43.28 (16.98) 48.81 (15.65) 62.89 (4.40) 

Sex 175F; 100 M 272F; 161 M 116F; 53 M 134F; 56 M 
TIV (cm3) 1049.71(106.87) 1064.28 (101.18) 1032.26 (109.82) 1007.48 (92.82) 
Education (years) 16.41 (2.35) – 15.59 (2.11) 15.69 (3.36) 
% of +FH (for the available cohorts) – – 17.80% 100% 
APOE status distribution n = 228 – n = 166 n = 190 

e2/e2 3  0 0 
e2/e3 22  11 14 
e3/e3 143  104 107 
e4/e2 8  6 6 
e4/e3 49  40 58 
e4/e4 3  5 5 

BMI (kg/m2) – – 24.36 (3.68); n = 168 22.20 (3.86) 
MOCA – – 28.93 (1.13) 28.03 (1.54); n = 189 
MMSE 28.37 (1.27) MMSE ≥ 25  29.28 (0.92) – 
Systolic BP – – 118.11 (15.50); n = 108 129.99 (16.52) 
Diastolic BP – – 74.56 (7.59); n = 108 75.28 (8.99) 
Physical Activity – – – n = 180 

Low Exercise    103 
High Exercise    77 

TIV = Total Intracranial Volume; +FH = positive family history of AD; BMI = Body Mass Index; MOCA = Montreal Cognitive Assessment; MMSE = Mini Mental State 
Examination; BP = Blood Pressure; M = Male; F = Female. Note: Education level is obtained as the total number of years of education in the DLBS and PREVENT-AD 
cohorts, and total number of years in proportion to the degree obtained for the MMALS cohort. Values in brackets are in standard deviation. Information that was not 
collected/reported by the datasets are marked with a dash. Summary information is presented for the full cohort, unless the cohort size is listed. 

Table 3 
Detailed demographic details of the train set.  

TRAIN SET (n = 596) DLBS SALD MMALS 

n 190 310 96 
Age 52.96 (19.41) 43.85 (17.28) 47.82 (17.61) 

Men 52.62 (19.61) 44.48 (17.65) 47.31 (18.31) 
Women 53.16 (19.38) 43.46 (17.09) 48.04 (17.44) 

Sex 119F; 71 M 192F; 118 M 67F; 29 M 
TIV (cm3) 1054.75 (102.18) 1067.24 (101.79) 1027.31 (108.51) 
Education (years) 16.39 (2.23) – 15.77 (2.16) 
% of +FH (for the available cohorts) – – 0% 
APOE Status (count) n = 158 – n = 95 

e2/e2 0  0 
e2/e3 15  8 
e3/e3 99  63 
e4/e2 4  3 
e4/e3 37  18 
e4/e4 3  3 

BMI (kg/m2) – – 23.94 (3.52); n = 95 
MOCA – – 28.85 (1.15) 
MMSE 28.28 (1.27) MMSE ≥ 25  29.44 (0.82) 
Systolic BP – – 118.18 (15.50); n = 65 
Diastolic BP – – 74.54 (6.78); n = 65 

TIV = Total Intracranial Volume; +FH = positive family history of AD; BMI = Body Mass Index; MOCA = Montreal Cognitive Assessment; MMSE = Mini Mental State 
Examination; BP = Blood Pressure. Note: The PREVENT-AD was solely used in the Test Set. Education level is obtained as the total number of years of education in the 
DLBS and PREVENT-AD cohorts, and total number of years in proportion to the degree obtained for the MMALS cohort. Values in brackets are in standard deviation. 
Information that was not collected/reported by the datasets are marked with a dash. Summary information is presented for the full cohort, unless the cohort size is 
listed. 
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Faculty of Medicine at McGill University. All participants in the cohort 
provided their informed consent to participate in the study. 

The PREVENT-AD cohort (Montréal, Canada) (Tremblay-Mercier 
et al., 2020) data release 5 was used in the current study. Some of the 
MRI data used from the PREVENT-AD are openly available at htt 
ps://openpreventad.loris.ca/. However, in the current analyses, data 
release 5 MRI and APOE data were used. All participants included in the 
current study were cognitively normal (CDR = 0 indicating no demen
tia) and had parental or multiple-sibling history for AD. The cohort, 
which consisted of 190 individuals (55–80 years; 134 females, 56 
males), was solely used as an independent test set. 

2.2. T1w MRI pre-processing 

The prediction model specifically focused on cortical thickness 
measures and subcortical regions because these measures are sensitive 
to age-related differences and are also expected to produce high model 
prediction accuracy (Cole, 2020). These measures were obtained from 
T1w MRIs acquired on 3T scanners (Supplementary Table 2 for details 
on imaging sites). Images were first pre-processed using the minc-bpipe- 
library pipeline (https://github.com/CobraLab/minc-bpipe-library), 
and then submitted to the CIVET 2.1.0 (https://mcin.ca/technology/c 

ivet/) pipeline to obtain cortical thickness measurements. The mea
surements for each participant were parcellated into 64 ROIs using the 
Desikan-Killiany-Tourville (DKT) atlas (Klein and Tourville, 2012; 
Collins et al., 1994; Lerch and Evans, 2005). Fourteen subcortical vol
umes were extracted from the aseg parcellation generated by FreeSurfer 
version 6.0 (Fischl et al., 2002) (see Supplementary Appendix for QC 
methodological details and Supplementary Table 6 for complete list of 
82 features used). 

2.3. Brain age prediction using elastic net regression 

2.3.1. Model training 
We first used a sex-stratified model training approach by training 

two elastic net models: one for women only, and one for men only. Both 
models performed similarly (Supplementary Fig. 1), which motivated 
our use of a mixed-sex training model to leverage the larger cohort size 
in both the training and testing sets. We present the methods and results 
for the mixed-sex cohort below. 

To build the elastic net model, the uFH cohort (from the DLBS, SALD, 
and MMALS datasets) were first split into training and testing sets using 
the createDataPartition function in the caret package (Kuhn, 2008) in R, 
which randomly split the cohort by Age and Sex into 70% training (n =
596) and 30% testing (n = 251; Table 1). In order to have a proportional 
representation of women and men (i.e., Sex) across the adult lifespan (i. 
e., Age) in the train and test sets, the age of participants was coded into 
three age bins: younger adults (YA:19–39 years), middle-aged adults 
(MA: 40–59 years) and older adults (OA: 60–89 years). These age groups 
were closely adapted from previous studies that investigated partici
pants throughout the adult lifespan (Ankudowich et al., 2016; Grady 
et al., 2006; Kwon et al., 2016; Subramaniapillai et al., 2019, 2018). The 
dot product of Age Group and Sex was then used to split the participants 
so that the train and tests in the uFH cohort were represented propor
tionally according to Age Group and Sex. See Tables 2-4 for a more 
detailed summary of participants in the full cohort, train, and test sets, 
respectively. 

The model was then trained on the training set using a tuning grid 
search at different values of alpha with 10-fold cross-validation, 
repeated 10 times, to determine the optimal lambda (‘shrinkage’) for 
each alpha value, to predict age from brain cortical thickness measures, 
while minimizing the root mean squared error (RMSE) between true and 
predicted age (see Supplementary Appendix for detailed methods). 

The brain structural features from the training set were then used to 
build an elastic net regularized regression model using the glmnet 
(Friedman et al., 2010) package (R 3.6.3, R Core Team, 2013). Cova
riates in the analysis were intracranial volume (ICV; a sum of cerebro
spinal, white matter, and grey matter volume), Sex, Site, and Euler 
number (a measure of MRI image quality control [QC] provided by 
FreeSurfer; Rosen et al., 2018). The continuous variables (i.e., brain 
structural measures, ICV, Euler number) were z-score standardized, 
while Sex and Site were treated as categorical factor variables. In total, 
82 predictors were used in the age prediction model: 64 cortical thick
ness features, 14 subcortical measures, and 4 covariates (Supplementary 
Table 6 for full list of predictors). We ran the training model on the full 
cohort which were individuals with scans that were successfully pre
processed and with Euler numbers that fell within 3 standard deviations 
of the mean. We also performed rigorous QC of this larger cohort and ran 
the training model on individuals who passed strict QC (Supplementary 
Appendix and Supplementary Tables 3-5). 

2.3.2. Model testing 
The trained elastic net model was then applied to the testing dataset 

to predict participants’ ages from their brain structural features (in 
addition to the covariates of interest) using the parameters estimated 
from the training dataset. Continuous variables were z-score standard
ized, whereas Sex and Site were treated as categorical factor variables. 
The testing set included the remaining 30% of the uFH cohort (n = 251) 

Table 4 
Detailed demographic details of the test set.  

TEST SET (n =
471) 

DLBS SALD MMALS PREVENT-AD 

n 85 123 73 190 
Age 54.06 

(20.90) 
43.71 
(17.17) 

47.93 
(14.25) 

63.10 (4.60) 

Men 55.97 
(21.14) 

45.30 
(17.90) 

44.00 
(16.26) 

63.61 (5.03) 

Women 53.07 
(20.90) 

42.85 
(16.82) 

49.86 
(12.90) 

62.89 (4.40) 

Sex 56F; 29 M 80F; 43 M 49F; 24 M 134F; 56 M 
TIV (cm3) 1038.43 

(116.52) 
1056.82 
(99.65) 

1038.76 
(111.95) 

1007.48 
(92.82) 

Education (years) 16.46 
(2.62) 

– 15.36 (2.02) 15.69 (3.36) 

% of +FH (for the 
available 
cohorts) 

– – 41.10% 100% 

APOE Status 
(count) 

n = 70 – n = 71 n = 190 

e2/e2 3  0 0 
e2/e3 7  3 14 
e3/e3 44  41 107 
e4/e2 4  3 6 
e4/e3 12  22 58 
e4/e4 0  2 5 

BMI (kg/m2) –  24.90 (3.82) 22.20 (3.86) 
MOCA –  29.03 (1.09) 28.03 (1.54); 

n = 189 
MMSE 28.59 

(1.25)  
29.07 (1.00) – 

Systolic BP – – 118 (15.67); 
n = 43 

129.94 
(16.52) 

Diastolic BP – – 74.58 
(8.77); n =
43 

75.28 (8.99) 

Physical Activity – – – n = 180 
Low Exercise    103 
High Exercise    77 

TIV = Total Intracranial Volume; +FH = positive family history of AD; BMI =
Body Mass Index; MOCA = Montreal Cognitive Assessment; MMSE = Mini 
Mental State Examination; BP = Blood Pressure. Note: The PREVENT-AD was 
solely used in the Test Set. Education level is obtained as the total number of 
years of education in the DLBS and PREVENT-AD cohorts, and total number of 
years in proportion to the degree obtained for the MMALS cohort. Values in 
brackets are in standard deviation. Information that was not collected/reported 
by the datasets are marked with a dash. Summary information is presented for 
the full cohort, unless the cohort size is listed. 
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and the +FH cohort (n = 220) from the PREVENT-AD and the MMALS 
cohorts. 

2.3.3. The impact of Sex differences in family history and APOE status on 
BAG 

BAG (i.e., Estimated Age – Chronological Age) was used as a measure 
of brain structural health. The BAG represents the individual deviation 
of chronological age from the typical aging trajectory (Franke and Gaser, 
2019) and is used to denote neurobiological aging processes. Negative 
values represent a younger appearing brain and positive values repre
sent an older appearing brain compared to the norm (Cole et al., 2019; 
Elliott et al., 2019, but see Vidal-Piñeiro et al., 2021). For example, if a 
participant has a predicted age of 70 years but their actual age is 80 
years, their BAG number is − 10, which means that their brain is 
considered to be 10 years younger than the normative brain of an 80- 
year-old. If their actual age is 60 years, then their BAG is +10 reflect
ing an older appearing brain relative to the norm. Thus, positive BAG 
numbers would indicate an older appearing brain, whilst all negative 
BAG numbers represent a younger appearing brain. 

First, we used a multiple regression model to examine whether Sex 
interacted with FH status in the effects of BAG on middle-aged and older 
adults (≥ 40 years) in the test set (n = 376; 259F, 117 M). This cohort 
consisted of participants in the MMALS and PREVENT-AD cohort for 
which FH status was known. We further excluded younger adults from 
this analysis because of the possibility that these effects might be driven 
artificially by younger adults, none of which had +FH status. We then 
ran a multiple regression model to investigate whether APOE status 
contributed to BAG in individuals with a FH of AD. This secondary 
analysis consisted of a subsample of participants with the e3/e3 

(-APOE4) or e3/e4 (+APOE4) APOE alleles (n = 191, 136F, 55 M) 
because there were insufficient data to test for the effect of the other 
alleles. 

2.3.4. Association of modifiable factors with BAG 
Multiple regression analyses were conducted to determine whether 

modifiable factors —Blood Pressure, BMI (n = 173, 124F, 49 M), and 
Physical Activity (n = 141, 98F, 43 M) —interacted with AD risk fac
tors—FH status, APOE status—to influence structural brain aging on the 
PREVENT-AD cohort. One outlier was removed for the analysis with BMI 
and two outliers were removed for the analysis with Physical Activity. 

In all our post-hoc regression analyses (see Supplementary Appendix 
for regression models), we included the participant’s chronological age 
as a covariate in the models to account for the observed bias in brain age 
models, which tends to overestimate BAG in younger adults and un
derestimate the gap in older adults.(de Lange and Cole, 2020; Le et al., 
2018; Liang et al., 2019; Niu et al., 2020; Smith et al., 2019). Analyses 
were performed in R version 3.6.3 (R Core Team, 2013) and P-val
ues<0.05 were considered statistically significant. 

3. Results 

3.1. Brain age model performance 

The trained model yielded an optimal shrinkage parameter (lambda) 
of 0.24, which was obtained with a mixing parameter (alpha) of 0.55 
yielding a RMSE of 10.24 years. The mean absolute error of prediction 
was 8.22 years. Cross-validation results gave a correlation between 
predicted age and chronological age of r = 0.86 (P < 0.05) in the uFH 

Fig. 1. The correlation between true age and predicted age of the full cohort in the test set (r = 0.83, p < 0.05) and split by FH status: participants with unknown FH 
(uFH; r = 0.86, p < 0.05) and with positive FH (+FH; r = 0.56, p < 0.05) of AD. The shaded areas represent the 95% confidence interval. 
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cohort, and r = 0.56 (P < 0.05) in the +FH cohort. The model explained 
74% of the age variance (R2) in the uFH cohort and 31% in the +FH 
cohort (Fig. 1). The trained model was more reliably able to predict age 
from brain structure in the uFH cohort than the +FH cohort (see Fig. 1 
and Supplementary Table 7 for the top 25 ROI features of age predic
tion). The results for the more rigorous QC cohort were similar to the full 
cohort model results (Supplementary Appendix), so we report the full 
cohort model here. 

3.2. Association of FH status and Sex with BAG 

An ANCOVA used to test the explicit interaction between FH status 
and Sex revealed a significant interaction, i.e., F(3, 371) = 2.97, P =
0.03. Post-hoc tests (using the Bonferroni correction to adjust for mul
tiple comparisons) indicated that women with +FH had a significantly 
smaller negative BAG than men with +FH (P = 0.008). No sex differ
ences occurred in BAG in the uFH cohort (P = 1.00). This analysis did 
not include the younger adult cohort used in the test set because we did 
not have any +FH young participants. Since this is the only post-hoc 
analysis that is conducted on datasets with varying Scanner Sites, we 
re-ran this analysis adjusting for Scanner Site and found that the Sex*FH 
interaction remained significant, F(3, 369) = 2.94, P = 0.03. To ensure 
that the effects were not driven by the middle-aged participants, we also 
re-ran the analysis on the older adult cohort alone (60 years and older, n 
= 225), finding that the interaction between Sex and FH Status remained 
significant (P = 0.03). Since participants in the uFH cohort comprise of 
negative or unknown FH status, all subsequent post-hoc analyses focus 
on participants with a known +FH status. 

3.3. Association of APOE status and Sex on BAG 

To understand whether the Sex effect in +FH on BAG was related to 
APOE effects, we used an ANCOVA to evaluate whether APOE status 
contributed to the greater BAG in women than men in a subset of par
ticipants. One participant had missing APOE information from the +FH 

cohort, so they were removed from further analyses. Participants were 
removed from the post-hoc analyses due to limited numbers in the APOE 
groups which are 14 e2/e3 carriers, 8 e2/e4 carriers, and 6 e4/e4 car
riers. Thus, of the 219 +FH participants with APOE status information, 
only the 191 participants with APOE status of e3/e4 or e3/e3 were used 
in post-hoc analyses. 

The explicit interaction between APOE status (e3/e3 and e3/e4 
groups) and Sex on the effect of BAG was tested in the +FH subsample 
that had either the -APOE4 or +APOE4 genotype (n = 191), revealing a 
Sex*APOE status effect on BAG, F(3, 186) = 3.19, P = 0.02. Bonferonni- 
corrected post-hoc tests revealed that +APOE4 women had a smaller 
negative BAG than +APOE4 men (P = 0.046), and a significant sex 
difference was not observed in the -APOE4 group (P = 0.08). Given the 
possibility that gene-environment interactions can influence BAG, next 
we tested whether modifiable AD risk factors contributed to this 
Sex*APOE status relationship. 

3.4. Association of modifiable factors and APOE status in the effects of 
BAG 

We conducted multiple regression analyses to test the interaction of 
three modifiable factors (Blood Pressure, BMI, Physical Activity) with 
APOE status and Sex effects on BAG. The models were not significant 
when Blood Pressure (systolic, diastolic) was tested, so this modifiable 
factor was not used in further post-hoc analyses. We observed a signif
icant BMI*APOE status interaction, (β = − 3.21 [SE, 1.52]; P = 0.04), 
which revealed that individuals with a higher BMI and +APOE4 risk 
showed a larger negative BAG than individuals with a higher BMI but no 
APOE4 risk. This interaction remained significant when the model was 
tested in women only (β = − 2.85 [SE, 1.43]; P = 0.049; Fig. 2) but the 
model was not significant when tested in men only, suggesting that the 
observed interaction was driven by women. 

A significant three-way interaction between APOE status, Sex, and 
Physical Activity was also observed (β = − 11.79 [SE, 5.71]; P = 0.04, 
Fig. 3). A Tukey’s post-hoc test revealed that in +APOE4 adults, greater 
physical activity was related to a larger negative BAG in men than in 
women (P = 0.049). No other significant differences were found. A lo
gistic regression revealed no significant effect of BMI on the level of 
Physical Activity (P > 0.05), demonstrating that these two variables 
were not correlated with each other. 

Logistic regressions were also completed to determine that there was 
no effect of APOE status on Age, Sex, ICV, Physical Activity and Edu
cation within the three test datasets (DLBS, MMALS, PREVENT-AD). In 
addition, we collapsed across datasets to determine if these variables 
played a role on the full test cohort. There were no effects of APOE status 
on Age, Sex, and ICV effects on the full test cohort (n = 286). There was 
also no effect of BMI on the PREVENT-AD and MMALS collapsed cohort 
(n = 227; DLBS cohort was excluded because this dataset did not collect 
the BMI of their participants). 

4. Discussion 

A growing body of research indicates that BAG (i.e., Estimated Age – 
Chronological Age ) is a sensitive metric for detecting early signs of AD 
(Gaser et al., 2013; Löwe et al., 2016). In the current study, we used 
elastic net regression to predict brain age in uFH and +FH adults to test 
the hypothesis that there were sex differences in the effect of unmod
ifiable AD risk factors on BAG. The more negative a BAG score, the 
younger the brain age. Participants in the +FH cohort had a mean 
negative BAG and thus, a healthy brain age, but differences emerged in 
the degree of negative BAG within the +FH cohort. Consistent with our 
hypothesis, we found that middle-aged and older women with unmod
ifiable risk factors (+FH and +APOE4) had an older brain age than men 
with equivalent risk factors, indicating that women with unmodifiable 
risk factors have brain anatomy that deviates more than men’s from the 
normative aging trajectory. In addition, we found that modifiable risk 

Fig. 2. The significant interaction between APOE status and BMI on the pre
dicted BAG, which was driven by women specifically. This interaction revealed 
that women with an +APOE4 genotype and a higher BMI showed a larger 
negative BAG than women with an –APOE4 genotype and a higher BMI. The 
shaded areas represent the 95% confidence interval. 
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factors, BMI and physical activity, contributed to how far +FH and 
+APOE4 women’s BAG deviated from the uFH normal aging trajectory. 
In the following sections, we discuss these findings in greater detail. 

Our findings demonstrate that women with non-modifiable risk 
factors of AD (+FH and +APOE4) had an ‘older’ appearing brain than 
men. This is consistent with studies demonstrating that both +FH and 
+APOE4 was associated with advanced structural brain aging in 
cognitively normal adults (Bendlin et al., 2010; Donix et al., 2010; 
Espeseth et al., 2008). While +APOE4 confers greater risk for women 
than men (Altmann et al., 2014; Breitner et al., 1999; Bretsky et al., 
1999; Farrer et al., 1997; Mortensen and Hogh, 2001; Payami et al., 
1996), no studies to date have shown sex differences in +FH risk on the 
effects of BAG, a potential indicator of accelerated aging. It is important 
to note that, on average, the +FH cohort had negative BAG values. 
However, the extent of how negative their BAG values were differed 
according to the risk factors assessed. Thus, our analysis supports the 
cognitively healthy status of participants (as shown by neuropsycho
logical scores), while also demonstrating that some groups had healthier 
brains than others. 

Independent of APOE status, +FH status has previously been asso
ciated with increased vascular and inflammatory markers (van Exel 
et al., 2009), which at chronic levels, has been linked to greater brain 
atrophy and increased risk of age-related pathologies (Lunetta et al., 
2007; Maggio et al., 2006). However, these studies did not segregate 
their analyses by sex, which might mask underlying sex-related bio
logical mechanisms associated with +FH status. For example, one study 
found that postmenopausal women with AD, for whom +FH status was 
common, had significantly higher serum levels of estrone and its pre
cursor, androstenedione, compared to controls (Cunningham et al., 
2001); but, no significant group differences in levels of testosterone or 
estradiol were observed. Women with estrogen replacement therapy 

were excluded from this study, and the AD group had significantly less 
body mass than the control group. Since these effects remained after 
adjusting for a variety of demographic and biological factors (e.g., age, 
BMI, cortisol, alcohol intake), the authors suggest that the difference 
could be attributed to abnormal levels of sex steroid production in AD, 
which may interact in complex ways with +FH status. Clearly, a closer 
examination of the specific estrogen subtype and differences in the 
menopause transition will clarify the role of menopause and estrogen 
levels on regulating adiposity and inflammatory processes in women 
with +FH. 

In addition, sociocultural factors may accompany +FH. For example, 
in +FH families, women are often caregivers for individuals with de
mentia, placing them at greater risk for developing dementia themselves 
(Norton et al., 2010). Caregivers of dementia patients suffer a greater 
degree of stress than other caregivers, with physiological and immune 
consequences such as high levels of stress hormones, reduced immune 
function, and greater cardiovascular health challenges (e.g., coronary 
heart disease; Carter et al., 2012). Thus, a complex interplay of sex- 
specific hormones, sociocultural factors, and AD risk factors may 
contribute to different brain-aging trajectories among +FH individuals. 
Future work should consider sex differences in genetic and non-genetic 
factors associated with +FH status on brain health and risk for AD 
conversion. 

Our study also brings some clarity to the debate about the role of 
late-life BMI in brain aging and its downstream contributions for de
mentia risk (Bolzenius et al., 2015; Shaw et al., 2018), by highlighting 
the importance of considering APOE genotype by sex. BMI interacted 
with APOE status in +FH women; in women with +APOE4 genotype, 
those with greater BMI benefited from a lower BAG than those with 
lower BMI. Women with AD risk factors who convert to dementia have 
been shown to be more vulnerable to weight loss, particularly early in 

Fig. 3. The significant interaction between APOE status, Sex, and Physical Activity on the predicted BAG. Men with the +APOE4 genotype who engaged in greater 
physical activity had a larger negative brain age gap than women with the +APOE4 genotype who engaged in greater physical activity. Error bars represent the 95% 
confidence intervals. 
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the AD transition prior to clinical symptoms (Johnson et al., 2006; White 
et al., 1998). Since +APOE4 women are more likely to convert to AD 
than +APOE4 men, higher BMI might protect against weight loss asso
ciated with transitioning to dementia. Higher late-life BMI has been 
linked to a reduced risk of converting from MCI to AD, a protective effect 
that did not persist in the presence of rapid weight loss (Bell et al., 2017). 
This protective effect of higher baseline BMI did persist in the presence 
of +APOE4, suggesting an interaction of BMI and APOE status (Bell 
et al., 2017). At midlife when women experience menopause-related loss 
of 17β-estradiol from the ovaries, fat tissue becomes a primary source of 
estrogens (Simpson, 2003). Thus, higher late-life BMI might be associ
ated with greater circulating estrogen which might be neuroprotective, 
particularly in post-menopausal women in which the ovaries cease to 
become the primary source of estrogen release. Importantly, it is critical 
to investigate whether different sources of estrogen exposure (e.g., age 
at menarche and menopause, time since menopause, and duration of 
hormone replacement therapy) and the role of female-specific hormonal 
transitions, such as parity, differentially contributes to brain aging in 
women (de Lange et al., 2020a, 2020b). 

In addition, sex differences in physical activity revealed that 
+APOE4 women did not benefit from greater physical activity as much 
as +APOE4 men did. This is contrary to the consensus that physical 
activity is beneficial in protecting brain structural health in all older 
adults, but that there may be a critical interaction with APOE genotype. 
Greater physical activity was less protective to brain age in +APOE4 
women than it was to +APOE4 men who engaged in greater physical 
activity, which might be consistent with the idea that preserving body 
weight may be more protective to women at greater AD risk. Impor
tantly, gendered patterns in physical activity may contribute to how 
exercise benefits women and men (see Subramaniapillai et al., 2021 for 
discussion of gendered contribution of lifestyle factors). For example, 
more than men, women report they exercise for weight loss and toning 
(Crawford and Eklund, 2016; Furnham et al., 2002; Hsiao and Thayer, 
1998; McDonald and Thompson, 1992; Prichard and Tiggemann, 2005; 
Tiggemann and Williamson, 2000), while more than women, men report 
exercising for social, competitive, and pleasure purposes (Markland and 
Hardy, 1993; Silberstein et al., 1988). Thus, women engaging in exercise 
for weight loss in particular may experience advanced brain aging 
particularly regarding interactions with the +APOE4 genotype. 

5. Limitations 

The limited availability of demographic information in some of the 
datasets prevented us from conducting comprehensive post-hoc analyses 
or really knowing how many participants with a possible family history 
of AD existed in the uFH data set. Unfortunately, the uFH cohort consists 
of both participants for whom FH is known to be negative and those for 
whom no FH status is collected. Regardless of this limitation, we still 
found a significant interaction between Sex and FH Status, demon
strating greater BAG (less negative) in the +FH cohort compared to the 
uFH cohort. 

Although only 31% of the entire +FH cohort had +APOE4, the effects 
were still robust compared to the uFH cohort. Unfortunately, the small 
number of participants in the other APOE carrier status groups was not 
sufficient to perform meaningful inferential statistics, so only partici
pants with e3/e4 or e3/e3 genotypes were analysed in the present study. 
Our cohort consisted of a larger proportion of women than men. To 
address this potential caveat, we split the data into train and test sets 
according to Age Group and Sex so that the numbers are represented 
across train and test sets within the uFH cohort. Moreover, when we ran 
the models separately in women and men, we found similar results (see 
Supplementary eFigure 2). Perhaps most importantly, these numbers of 
women and men in each cohort reflect the actual sex differences in AD 
with women carrying twice the burden at every age starting at 45. 
Future work should explore these effects in a much larger cohort of 
participants with the full breadth of APOE carrier distributions. Finally, 

it is critical that future longitudinal studies of neurocognitively healthy 
middle-aged and older +FH adults be conducted to determine whether 
this cohort continue to follow a healthy brain-aging trajectory, or 
transition to a more pathological one. 

The current findings suggest a complex relationship between non- 
modifiable and modifiable risk factors, and patterns of brain aging in 
women and men. Although non-modifiable risk factors (i.e., +FH and 
+APOE4) contribute to an older brain age in women compared to men, 
modifiable factors have the potential to mitigate this relationship by 
decreasing the BAG. Future work should endeavour to measure modi
fiable factors in clinical trials to investigate this relationship in order to 
make appropriate conclusions on the effects of modifiable and risk 
factors on BAG in men and women. 
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