publishers.

and is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

This document is copyri

This

_—
—
AMERICAN
PSYCHOLOGICAL
ASSOCIATION

»
andl
-
-

Journal of Experimental Psychology: General

© 2025 American Psychological Association
ISSN: 0096-3445

https://doi.org/10.1037/xge0001745

Characterizing Age-Related Change in Learning the Value of
Cognitive Effort

Camille V. Phaneuf-Hadd', Isabelle M. J acquesl, Catherine Insel® 3, A. Ross Otto*, and Leah H. Somerville!: >

! Department of Psychology, Harvard University
2 Department of Psychology, Northwestern University
3 Institute for Policy Research, Northwestern University
4 Department of Psychology, McGill University
> Center for Brain Science, Harvard University

Adults often titrate the degree of their cognitive effort in an economical manner: they “think hard” when the
reward benefits of a task exceed its difficulty costs. Nonetheless, it remains to be seen whether and how
children and adolescents adjust their cognitive effort according to multiple cues about its worthwhileness,
including in novel environments where these cues must be learned through experience. Given that the
processing of incentive and demand information changes with age, the present study examines participants’
(primary experiment Nygpie = 150, secondary experiment Nygpie = 150, ages 10-20 years) performance
across two task-switching paradigms that manipulated the rewards offered for, and the difficulty of,
engaging cognitive effort. In the primary experiment, reward cues were instructed but difficulty cues were
learnable. In the secondary experiment, the reward and difficulty cues were both instructed, eliminating
learning demands and effectively making the task easier. The primary experiment revealed that although
less difficult contexts promoted greater accuracy at the group level, the regulation of cognitive effort
according to higher and lower incentives emerged with age. Especially early in the task, older participants
achieved greater accuracy for higher incentives. Younger participants, unexpectedly, achieved greater
accuracy for lower incentives and adolescents performed similarly for each reward level. Nonetheless,
participants of all ages self-reported trying their hardest for higher incentives, but only adults translated this
aim into action. The secondary experiment revealed that in an overall easier task environment, cognitive
effort did not become increasingly economical with age. Taken together, this pattern of findings suggests
that different sources and amounts of information, and the conditions they are presented in, shape learning
the value of cognitive effort from late childhood to early adulthood.

Public Significance Statement

While adults have been shown to weigh instructed reward benefits and learnable difficulty costs when
deciding how hard they try on a given task, less is known about how children and adolescents use these
information sources to adaptively allocate their effort. Addressing this gap, here we demonstrate that, with
age, individuals increasingly rely on information that tells them about how demanding a task will be and
what incentives they can earn for performing well. However, children through adults self-report trying
harder when greater rewards are at stake. These results reveal that the way multiple sources of information
are presented guides how much individuals try in different ways across age, which has important im-
plications for further applied education research that aims to design developmentally appropriate materials.
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2 PHANEUF-HADD, JACQUES, INSEL, OTTO, AND SOMERVILLE

To efficiently navigate their environments, individuals of all ages
must decide which tasks merit the expenditure of cognitive effort.
For example, if Jane is a student who cannot complete all the
homework that she is assigned and yet wants to earn the best marks
that she can, Jane should determine which assignments are most
worthwhile. Worthwhile assignments are low in difficulty (e.g.,
Jane’s math homework is less demanding than her history home-
work) and high in potential reward (e.g., Jane’s math homework
contributes to a larger percentage of her final grade than her history
homework). Like Jane, adults do not maximize their effort all the
time because cognitive processing resources are limited (Kool et al.,
2017; Shenhav et al., 2017, 2021; Westbrook & Braver, 2015).
Rather, adults typically engage in cost-benefit analyses to guide
their effort exertion, deploying effort when its reward benefits
exceed its difficulty costs (Fromer et al., 2021; Grahek et al., 2023;
Otto et al., 2022; Westbrook et al., 2019). Notably, adults even
learn the information necessary to perform cost-benefit analyses in
novel environments (Bustamante et al., 2021; Grahek et al., 2023;
Otto et al., 2022). Still, it is important to understand how age-related
changes in the arbitration between difficulty and reward information
shape how cognitive effort is allocated across development. The
economical allocation of cognitive effort is a case study of a broader
topic of interest: how does strategic, goal-directed behavior change
from childhood to adulthood? Clarifying how different types of
information are used to promote efficient cognitive effort exertion
sheds light on how individuals come to pursue adaptive outcomes
through adolescence.

Children, adolescents, and adults may react variably to simul-
taneous sources of information. Prior research demonstrates that
when multiple information streams are available, which streams and
how many streams are called upon to make decisions and learn from
those choices change with age. Namely, children and adolescents
seem to rely on proximal reward information more than their adult
counterparts (Decker et al., 2015, 2016; Nussenbaum et al., 2020;
Palminteri et al., 2016; Potter et al., 2017). On the other hand, adults
have access to an array of sophisticated choice strategies that allow
them to exploit more sources of information (Lieder & Griffiths,
2017). This developing ability, to access a diverse array of decision-
making strategies, is important for facilitating the increasingly
flexible judgments required of adults (Jacobs & Klaczynski, 2002;
Munakata et al., 2012).

Although children and adolescents utilize reward information
that is immediately available to a greater extent in their choices,
adults titrate their goal-directed behavior for different degrees
(Cohen et al., 2022; Insel et al., 2017; Rodman et al., 2021; Stérmer
et al., 2014) and different rates (Devine et al., 2021) of incentive
opportunities more than younger individuals. This may be because
adults are better at calibrating their learning to the reinforcement
statistics of their environments (Nussenbaum & Hartley, 2019) and
assigning values to their goals (Davidow et al., 2018). Since making
reward-maximizing decisions, and learning from them, increase
through adolescence (Hartley & Somerville, 2015; Wilbrecht &
Davidow, 2024), we first hypothesize that adults will, economically,
invest more cognitive effort when higher incentives are at stake,
while children and adolescents will not modulate their cognitive
effort according to incentive magnitude.

Cost-benefit analyses that guide cognitive effort exertion
involve more than just reward information. Individuals should also
heed information about how demanding a task will be when

deciding how hard to try. Sometimes, the difficulty level of a task
must be learned through repeated experiences. Ganesan and
Steinbeis (2021) tested the use of demand information in children
5-11 years through high- and low-difficulty cognitive control
tasks. After acclimating to the demands required of each task,
participants chose which they would like to complete and the
response time for their decision was recorded. Throughout the
sample, participants took longer to choose the high-difficulty task,
suggesting that children as young as 5 years are cognizant of
cognitive effort costs (Ganesan & Steinbeis, 2021). However,
detecting a difficulty signal is not the same as leveraging it to
adjust one’s cognitive effort for the situation at hand. Indeed,
whether children 5-11 years use information about task demands
to guide their cognitive effort depends on their metacognitive insight
into the difficulty of a task: in Ganesan and Steinbeis (2021), if
children accurately estimated how well they could perform in the
high-difficulty task, then they were more likely to choose it. Perhaps,
such metacognitive insights allowed children to gauge whether the
cognitive effort required of the task matched their abilities and act
appropriately.

Further evidence for difficulty information shaping cost—benefit
analyses in adults more than in children and adolescents is seen in
studies of proactive versus reactive control. Manipulating proactive
and reactive control has been used previously to change how easy or
hard a task will be: deploying proactive control (sustained and
anticipatory goal maintenance) can make succeeding in cognitive
tasks more attainable than would be possible by deploying reactive
control (transient and stimulus-driven goal reactivation; Braver,
2012). Proactive control strategies ease moment-to-moment pro-
cessing and improve performance. Therefore, proactive versus
reactive control research offers an indirect window into the effects of
difficulty on cognitive effort during development. While younger
children may be aware of proactive and reactive control manip-
ulations, engaging demand-reducing proactive control to improve
cognitive task performance continues to emerge into older child-
hood, adolescence, and adulthood (Chatham et al., 2009; Chevalier
et al., 2015; Martinez et al., 2018; Niebaum et al., 2019, 2021).
Therefore, the application of difficulty information to cognitive
effort decisions is thought to develop through adolescence, and age
variability may be especially apparent in motivational contexts
(Wilbrecht & Davidow, 2024).

Taken together, the lines of work described above indicate that
increases in age are associated with enhancements in the capacity to
monitor cognitive effort expenditure, an aptitude thought to anchor
on metacognition (Chevalier & Blaye, 2016), as well as enhance-
ments in the employment of proactive control to promote success
during forthcoming cognitive tasks. Because metacognitive abilities
improve through adolescence (Chevalier, 2015; Weil et al., 2013)
and proactive versus reactive control modes become selected more
adaptively during the same period, we expect that—in addition to
changing incentives for cognitive effort—changing difficulty levels
of a task will impact how much cognitive effort is devoted to it
(to perform well) differently across age. Namely, our second
hypothesis predicts that adults will economically withdraw their
cognitive effort when task demands are relatively high, while
children and adolescents will not regulate their cognitive effort
according to varying degrees of demand. As for reward informa-
tion, difficulty information will shape cognitive effort decision
making increasingly with age.
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MOTIVATED COGNITIVE EFFORT ACROSS DEVELOPMENT 3

So far, we have established the fairly respective roles that reward
and difficulty information may play in the cost—benefit analyses that
direct cognitive effort exertion in children, adolescents, and adults.
However, existing research suggests that how reward and difficulty
information are incorporated to guide cognitive and physical effort
investment also varies considerably with age (Rodman et al., 2021;
Veselic et al., 2021). For instance, across multiple, cued difficulty
levels, adults but not adolescents alter their effort according to the
magnitude of reward they know to be at stake (Rodman et al., 2021;
Veselic et al., 2021). Nonetheless, a gap remains in our knowledge
about how children through adults navigate this goal-directed
behavior: how do individuals modulate their cognitive effort not just
according to multiple sources of information, but to sources
of information that are not immediately available and instead are
learned over time?

To characterize this modulatory process, we employ a child-
friendly task-switching paradigm that manipulates incentivized and
demanding cognitive control (including block design elements
adapted from Otto et al., 2022). In a primary experiment, to make
estimating the value of cognitive effort tractable in children, we
allow one source of information to be accessible and force one
source of information to be acquirable. For this paradigm, reward
information is explicitly instructed but difficulty information must
be learned through experience. In testing task-switching perfor-
mance for each incentive and demand manipulation, we predict that
participants of all ages will detect difficulty information on its own.
However, our third hypothesis is that adults, more than children and
adolescents, will integrate and leverage these information sources:
the incentive and demand cues will combine to guide adults toward
efficient cognitive effort exertion over time. Concretely, a reward
and difficulty interaction will emerge between the beginning and
ending blocks of the task for older participants but not for younger
participants, such that adults eventually perform highest in easy,
rewarding conditions and lowest in hard, unrewarding conditions.
For completeness, a secondary experiment administered in a separate
sample probes the role of learning versus instructing information by,
instead, cueing difficulty explicitly. Our fourth hypothesis expects
that age-related changes in efficient cognitive effort exertion will be
even more pronounced when this information source does not need to
be learned through experience. Finally, we also measure participants’
views of their task-switching performance for each manipulation, and
our fifth hypothesis is that metacognitive accuracy will improve
through adolescence. Ultimately, we predict that both lines of
analyses will reveal that the titration of cognitive effort according to
instructed reward and learnable difficulty cues becomes more
economical from late childhood to early adulthood (hypotheses one
to four) as metacognitive awareness of cognitive effort grows
(hypothesis five).

Method
Participants

One hundred fifty-two individuals ages 10-20 years partici-
pated in this online study. They were evenly distributed across age
and parent/guardian- or self-reported gender (M,g. = 15.49 years,
SD,z. = 3.17 years; 79 participants reported their gender as
feminine, 68 participants reported their gender as masculine, three
participants reported that their gender was not captured by the

previous options; Supplemental Figure S1). From a list of races,
11.33% identified as Asian, 6.67% as Black/African American,
60.67% as White/Caucasian, and 21.33% reported that their
race was not captured by the previous options. From a list of
ethnicities, 12.00% identified as Hispanic while 88.00% did not.
Participants were contacted from a database of families and
through other means of community recruitment, then screened for
exclusion criteria. Participants must have been living in the
United States at the time of the study. Additionally, participants
(and for minors, their parents/guardians) were excluded if they
did not have corrected-to-normal visual acuity, were not fluent
in English, or had cognitive impairments limiting their ability
to consent/assent or execute the task. Participants were also
excluded if they were current users of psychotropic medications;
had current learning disabilities; had autism, attention deficit
hyperactivity disorder, movement disorders, or other major health
problems; had current psychiatric or neurological illness diag-
noses (except adjustment disorder); and if they did not have
corrected-to-normal audition. Participants must have completed
over 90% of the practice phase and learning task (described
below) to be included in the present sample. If a participant failed
to do so, another age- and gender-matched participant was re-
cruited to take their place. One participant was excluded from all
analyses for failing to respond to more than 90% of practice trials
(age =20.55 years) and one participant was excluded for failing to
respond to more than 90% of learning trials (age = 18.39 years).
The remaining 150 participants were included in the primary data
analyses. Speed outlier trials (trials for which a participant’s
reaction time was greater than three standard deviations from their
mean reaction time) were excluded from all analyses; this cri-
terion applied to 1.64% of trials. One additional participant was
excluded from the post-task rating analyses (described below)
because they closed the study prematurely (age = 10.59 years).

The sample size exceeds that of adult-only work implementing a
similar, blocked task-switching paradigm (Otto et al., 2022; 83
participants), as well as prior research examining reward-modulated
physical effort engagement from early adolescence to young
adulthood (Rodman et al., 2021; 103 participants ages 12-23 years).
A traditional a priori power analysis was not conducted because,
to our knowledge, no extant studies have examined—in our age
range—how cognitive effort is moderated by coinciding reward and
difficulty information across time.

Participants were paid $20.00 for an hour for their time and were
eligible to receive up to $15.20 in performance-based bonus pay-
ments. Compensation was administered through a gift card of the
participant’s choosing. Prior to the present study, participants were
invited to partake in another project from our laboratory and were
compensated separately. During that testing session, participants
provided informed consent/assent and parents/guardians of minors
gave their permission for both studies. All data collection practices
were approved by the Committee on the Use of Human Subjects at
Harvard University.

Online Testing Environment

Participants completed the study from home, on a laptop or
desktop computer, using a Google Chrome web browser. To make
the study accessible to as many participants as possible, participants
could complete the experiment asynchronously at any time over the
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course of a week, as long as they did so in one sitting. Parents/
guardians of minor participants were repeatedly instructed not to
intervene during the study (e.g., Supplemental Figure S2). The study
was hosted on Qualtrics and Pavlovia, and the task-switching
paradigm was programmed using PsychoPy (Version 2021.2.3;
Peirce et al., 2019), which offered the requisite precision for the
behavioral measures of interest (Supplemental Methods). All data
were de-identified on these platforms. Nearly every participant
finished the entire experiment in under 40 min.

Ahead of the experiment, participants completed the matrix
reasoning subtest of the Wechsler Abbreviated Scale of Intelligence
(Wechsler, 2011) to evaluate whether there was unbalanced
cognitive ability across the sample as a product of age-related
sampling biases or random chance. We did not find evidence of
this potential confound (age-adjusted f-score ~ age: R* = 0.003,
F(1, 148) = 0.484, p = .488). Participants also underwent a
brief prestudy audio test to ensure that they could play the verbal
instructions from their computers (Nussenbaum et al., 2020).

Task-Switching Paradigm
Structure of Task-Switching Trials

The online study was a child-friendly task-switching paradigm
(Figure 1) with cartoon alien stimuli. There were two colors of aliens
(blue, orange) with two types of stomachs (striped, solid), for a total

Figure 1
Schematic Representation of Learning Task

of four unique aliens (equalized for luminance). In some trials,
participants reported the alien’s body color; in other trials, parti-
cipants reported the alien’s stomach pattern. Whether participants
should respond to an alien’s body color or stomach pattern was
depicted with a probe above the stimulus that meaningfully related
to the target action (blue/orange bar signaled a color trial; striped/
solid bar signaled a pattern trial; Chevalier & Blaye, 2009).
Switching between color and pattern trials engenders cognitive
control demands, so infrequent task switches across a series of trials
should be experienced as easier while frequent task switches across
a series of trials should be experienced as harder. Accordingly,
during the easy conditions, participants experienced low task switch
probabilities, whereby 20% of trials switched from the previous trial
type. Meanwhile, during the hard conditions, participants experi-
enced high task switch probabilities, whereby 50% of trials switched
from the previous trial type.

Participants were told that correct and rapid task-switching
performance would be rewarded with a monetary bonus. Participants
earned 1 or 10 cents per trial for accurate responses, and they received
an additional $1 bonus if their average response time throughout the
task was less than 2,000 ms or an additional $2 bonus if their average
response time was less than 1,000 ms. Incentivizing correct and rapid
performance was based on previous literature (Bowers et al., 2021;
Padmala & Pessoa, 2011) and allowed for both accuracy and speed to
be examined as outcome measures of motivated cognitive control.
The 240 trials each included a blank screen (1,000 ms), a color or

CUE SCREENS
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Note. (Cue screens) Before completing a series of trials, participants viewed a cue screen showing which mini reward block
they were in. There were four types of mini reward blocks: easy 10 cents, easy 1 cent, hard 10 cents, and hard 1 cent. The incentive
cue (1 or 10 cents) was explicitly displayed with gold and silver coins, respectively. The difficulty cue (planet or moon galaxy)
needed to be learned through experience. Participants could use these cues to guide their cognitive effort during the upcoming set

of task-switching trials. (Trial sequence) During each trial, participants viewed a cue screen, alien stimulus target, then
performance-based feedback with their earned incentive. The following trial either implemented the same trial type or switched to
adifferent trial type (in the example pictured, the trial switched from pattern to color). The presence of a blue/orange bar above the
alien stimulus signaled a color trial, while the presence of a striped/solid bar above the stimulus signaled a pattern trial.
Participants responded using the F and J keys; these labels were included on the bars to remind participants to press those keys for

each color or pattern.
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MOTIVATED COGNITIVE EFFORT ACROSS DEVELOPMENT 5

pattern probe with an alien stimulus (3,000 ms response window),
another blank screen (500 ms), and a feedback screen (correct,
incorrect, or too slow) that revealed the amount earned (1,000 ms;
Figure 1, trial sequence).

Primary Manipulation of Reward and Difficulty
Information

Critically, to shape the value of cognitive control according
to multiple sources of information, these trials were embedded
within a 2 X 2 block design, inspired by Otto and colleagues (Otto &
Vassena, 2021; Otto et al., 2022). First, the 240 trials were divided
into six, 40-trial blocks with two levels of difficulty. As mentioned
above, the easy blocks had a low, 20% task switch probability while
the hard blocks had a high, 50% task switch probability. Since prior
studies indicate that a task switch rate of 50% is experienced as more
demanding (Devine & Otto, 2022; Mittelstadt et al., 2018) than a
lower task switch rate (e.g., 20%), the difficulty manipulation should
imbue greater cognitive control costs in the hard than easy condition.

Within each block of 40 trials at high or low difficulty, there were
two, 20-trial mini reward blocks. Mini reward blocks were defined
by the incentives at stake, 1 or 10 cents, for accurate and rapid
performance. Thus, the reward manipulation should imbue greater
cognitive control benefits for the 10 than 1 cent condition. The mini
reward blocks, and the difficulty context blocks they were situated
in, were presented to participants in a pseudorandomized order,
balanced across age and gender. Participants were offered 1 min
breaks after completing 80 and 160 trials.

Each 20-trial mini reward block was preceded by a cue screen
(2,000 ms; Figure 1, cue screens) displaying information about the
reward and difficulty levels of the upcoming trials. For all partici-
pants, seeing a silver coin signaled 1 cent incentives in the forth-
coming block and seeing a gold coin signaled 10 cent incentives in
the forthcoming block. Planets or moons along the top of the screen
represented the difficulty level, with one cue signaling a forthcoming
easy block and the other cue signaling a forthcoming hard block. The
assignment of planets and moons to difficulty levels was random for
each participant. Since these difficulty cues were not instructed in
advance, participants had to acquire the cue associations during the
task. Through experience with the task switch rates, participants
could learn which difficulty levels the planets and moons corre-
sponded to.

Together, participants could use the information on the cue
screens—about how demanding the upcoming trials would be and
how much they would earn for performing well in them—to adjust
their cognitive effort in task-switching according to learnable dif-
ficulty and instructed reward. Crucially, previous research in similar
age ranges has established that the participants tested here could
plausibly detect, and voluntarily leverage, the incentive and demand
dimensions of the cue screens to guide their cognitive effort allo-
cation proactively (Chevalier & Blaye, 2016; Jin et al., 2020;
Niebaum & Munakata, 2020; Veselic et al., 2021).

Dependent Variables Measuring Cognitive Effort

We computed participants’ accuracy and reaction time for each
mini reward block. The task manipulations abided by a fully within-
subjects design, so we could examine, for each participant, these
performance measures in one mini reward block relative to the

other mini reward blocks. Given that we motivated correct and
rapid responses with a monetary bonus, we treated greater accuracy
and faster reaction time as indices of successful cognitive effort
investment in a mini reward block. Both types of performance
measures can be informative for evaluating the degree of reward-
and difficulty-modulated cognitive effort. However, we aimed to
characterize how the value of cognitive effort is learned, and studies
of reinforcement learning through adolescence often use the
accuracy of trial-wise responses to assess how reward shapes choice
behavior across age and time (Nussenbaum & Hartley, 2019).
Therefore, accuracy is regarded as the key dependent variable of
interest in this developmental study to make our findings readily
comparable with relevant prior literature.

Practice Phase

To ensure that child, adolescent, and adult participants were
exposed to the structure and demands of task-switching before they
were presented with additional reward and difficulty information,
the sample underwent a 120-trial practice phase prior to completing
the learning task. Participants had the opportunity to engage in an
analogous task-switching paradigm but without cue screens or in-
centives. All participants finished, in order, a 30-trial easy block,
30-trial hard block, 30-trial easy block, and 30-trial hard block. As
supported by exploratory data visualizations, the practice phase was
effective in familiarizing participants with the paradigm’s instruc-
tions and response procedure (Supplemental Figure S3).

Secondary Manipulation of Learnable and Instructed
Information

In the experiment described above, reward information was in-
structed on the cue screens while difficulty information was learnable
(Figure 1, cue screens). To clarify the role of learnable versus in-
structed difficulty information in cognitive effort value learning, we
ran another experiment in 152 participants ages 10-20 years.
After excluding two participants for failing to respond to more than
90% of practice trials (ages = 17.08 years, 19.82 years), a final
sample of 150 participants was included in the secondary data
analyses. Importantly, the samples of both experiments were mat-
ched along key demographic variables (Supplemental Table S1). All
procedures of the secondary experiment were the same as those in the
first, except difficulty information was explicitly labeled on the cue
screens (Supplemental Figure S4).

Post-Task Ratings

After the practice phase and learning task, participants com-
pleted two sets of post-task ratings about each reward-difficulty
cue (Figure 1, cue screens) according to 7-point Likert scales.
First, participants were asked to report how hard they tried in each
planet or moon galaxy (from “Tried Very Little” to “Tried Very
Hard”); this allowed for a comparison between the degree to
which participants’ self-reported cognitive effort aligned with
their task-switching performance (quantified by their accuracy).
Second, participants were asked to report how hard they found
each galaxy (from “Very Easy” to “Very Hard”); this checked
whether the participants were aware of the different demands in
the easy and hard difficulty contexts.
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Additionally, a subjective value of money scale was adminis-
tered, in which participants were asked to rate how much the
amounts of money used in the task meant to them. These ratings
were indicated with a sliding bar (from “Not much money” to “A lot
of money”’), which were converted to a value representing the percent
change from 1 to 10 cents. If the titration of cognitive effort according
to reward and difficulty information increases from childhood to
adulthood, then it should be confirmed that our result is not a
consequence of a simple confound—that 1 and 10 cents were valued
differentially across age. Prior work has demonstrated age-consistent
valuation of monetary outcomes (Insel et al., 2017, 2019; Insel &
Somerville, 2018; Rodman et al., 2021), but this consistency was
nonetheless verified within the sample collected here, percent change
from 1 to 10 cents ~ age: R* =0.003, F(1, 136) = 0.388, p =.535.

Following these post-task ratings, participants were directed to
self-report questionnaires. These questionnaires indexed individual
variability in motivational processes thought to be relevant for
using reward and difficulty information to shape cognitive effort
(Supplemental Methods).

Analytical Approach
Primary Mixed-Effects Modeling Overview

Mixed-effects models from the /merTest package (a wrapper for
the /me4 package, plus additional inferential output; Version 3.1.3;
Bates et al., 2015; Kuznetsova et al., 2017) in R (Version 4.1.2;
R Core Team, 2021) were used to test our first three hypotheses,
that learning the value of cognitive effort undergoes refinement
from childhood to adulthood. Two models were run with identical
predictors (enumerated below) but different dependent variables:
sum of binary response accuracy across a mini reward block and
mean of continuous response reaction time (measured in ms) across
a mini reward block. Since the dependent variable for the accuracy
model was the number of correct trials in a mini reward block out
of the total number of trials in that block, the accuracy model was
fit as binomial generalized linear mixed-effects analysis with the
glmer function. The distributional assumption of the binomial
model was appraised with a posterior predictive check (using the
posterior_predictive_check function from the performance
package in R; Version 0.9.1; Liidecke et al., 2021) and deemed
fulfilled. The reaction time model was fit as linear mixed-effects
analysis with the Imer function. The distributional assumption of
the Gaussian model was appraised with a qqg-plot and posterior
predictive check (using the posterior_predictive_check function
from the performance package in R; Version 0.9.1; Liidecke et al.,
2021). These tests confirmed that reaction time was reasonably
normal.

Post hoc tests were conducted for key results to better under-
stand age-related changes in the influence of the reward-difficulty
manipulation on cognitive effort exertion. These tests were run
using the emmeans function from the emmeans package in R
(Version 1.7.5; Lenth, 2022). For each test, estimated marginal
mean differences between conditions of interest were compared
for instructive age values extracted from a fitted model: two values
near the youngest end of our age range (10.50, 11.50 years),
two values near the oldest end of our age range (19.50, 20.50
years), and two values in the middle of our age range (15, 16 years).

p values were corrected for multiple comparisons according to the
Holm method.

Primary Predictor Variables

The fixed main effect predictors were age (in years; calculated
continuously and treated as a metric variable), time (treated as a
categorical ordinal variable with three levels; early: trials one-80,
middle: trials 81-160, late: trials 161-240), difficulty (treated as a
categorical variable with two levels; easy and hard), and incentive
(treated as a categorical variable with two levels; low and high).
Each of these fixed main effect predictors was permitted to interact
with each other. Participant ID was associated with a random
intercept to account for repeated measurements. To mind the
possibility that there may have been between-participant variance
in the shape of the effect of time, difficulty, or incentive on accuracy
and reaction time, the necessity of associating time, difficulty, and
incentive with random slopes was considered but deemed super-
fluous (Supplemental Methods).

Assessing the Significance of Primary Effects

Analyses of deviance (type II, Wald x* tests with Satterthwaite
approximations for degrees of freedom) using the ANOVA function
from the car package in R (Version 3.1.0; Fox & Weisberg, 2019)
were performed on the mixed-effects models described above. All
main effects and interactions produced by the models demonstrating
p < .05 were interpreted as statistically significant, while all main
effects and interactions produced by the models demonstrating p <
.10 were interpreted as marginally significant. These main effects
and interactions were examined visually using the plot_model
function from the sjPlot package in R (Version 2.8.10; Liidecke,
2021), as well as the ggpredict function from the ggeffects package
in R (Version 1.1.2; Liidecke, 2018) in concert with variants of the
ggplot function from the ggplor2 package in R (Version 3.4.1;
Wickham, 2016). Raw data visualizations were implemented using
variants of the ggplot function from the ggplor2 package in R
(Version 3.4.1; Wickham, 2016).

Evaluating Secondary Manipulation of Information

To test our fourth hypothesis, that there are even greater age
differences in behavior—reflecting increasingly efficient valuations
of cognitive effort into adulthood—when reward and difficulty
information are both instructed, an accuracy mixed-effects model
identical in structure and distributional assumptions to that described
for the primary experiment was fit to participants’ responses in the
secondary experiment. The significant main effects and interactions
were assessed using the same tools as described before.

Additional Analyses

To build upon our primary analyses, and to test our fifth
hypothesis, we also ran a mixed-effects model that captured age-
related changes in metacognitive awareness of cognitive effort
exertion for each condition. The dependent variable was partici-
pants’ 7-point Likert effort rating in response to the question:
“How hard did you try in this galaxy?” As before, the model was fit
as linear mixed-effects analysis with the Imer function, then the


https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp

gical Association or one of its allied publishers.

ghted by the American Psycholo

ly for the pers

This document is copyri

MOTIVATED COGNITIVE EFFORT ACROSS DEVELOPMENT 7

distributional assumption of the model—that effort rating was
reasonably normal—was appraised and confirmed.

The fixed main effect predictors were age, accuracy for each
galaxy, and galaxy, where galaxy corresponded to the four types of
mini reward blocks: easy 10 cents, easy 1 cent, hard 10 cents, and
hard 1 cent. The significant main effects and interactions were
assessed using the same tools described earlier. In this analysis, we
chose to model galaxy as four levels of one variable, rather than
two levels of difficulty and two levels of incentive (as in the primary
analyses). This decision was made because both age and accuracy
were continuous metric predictors here, so treating galaxy as a single
variable facilitated ease of model interpretation. Moreover, modeling
galaxy as a single variable was more closely tied to the data collected:
participants were asked to rate their effort at the level of the condition
overall, rather than at the level of difficulty (e.g., “How hard did you
try for planets?”) or incentive (e.g., “How hard did you try for gold
coins?”’) alone.

Transparency and Openness

The preregistration for the primary experiment, submitted before
data collection, can be found at https://osf.io/h9cxv. The prereg-
istration for the secondary experiment, submitted before data
analysis, can be found at https://osf.io/3epua. Minimal updates to
these preregistrations were made during data analysis (Supplemental
Methods). All anonymized data and code to produce the figures and
perform the analyses are available at https://github.com/andlab-ha
rvard/cogeft_paper_phaneuf-hadd.

Results
Paradigm Validation and Data Distribution Checks

Paired, one-tailed 7 tests were conducted to verify that participants’
performance was modulated by the learnable difficulty manipulation.
As expected, participants demonstrated more correct and faster re-
sponses for the easy relative to hard difficulty context (accuracy:
1(149) = 3.228, p < .001; reaction time: #(149) = —=7.683, p < .001).

It was important that there were comparable opportunities for
participants to modulate their behavior under each combination of our
reward and demand manipulations. A lack of modulation opportunity
for any condition relative to the others would be revealed by a uniquely
small degree of accuracy or reaction time variability. If a condition
produced such variance compression, then we would be concerned
about our ability to detect age-related changes in that condition over
time. To this end, we visualized performance distributions across each
mini reward block (Supplemental Figure S5). Crucially, we did not
find evidence of unbalanced variance compression for accuracy or
reaction time for any incentive amount or difficulty context.

Reward and Difficulty Guided Cognitive Effort
Differently Across Time and Age

To investigate how cognitive effort exertion is tuned across time
and age according to instructed reward and learnable difficulty
information, we first characterized the interacting influences of age,
time, difficulty, and incentive on the accuracy of responses during the
learning task. From the accuracy mixed-effects model (Supplemental
Table S2), we found significant main effects of age, X2(1 ,N=150)=
10.42, p < .01, and difficulty, x*(1, N=150) = 9.14, p < .01, such that

accuracy increased with age and was greater for the easy relative to
hard difficulty context.

Building from these main effects, and in support of our first
hypothesis, we found a significant two-way interaction between age
and incentive, y*(1, N = 150) = 8.41, p < .01; accuracy improved
more steeply for higher than lower incentives with increasing age.
Post hoc tests of estimated marginal mean differences between
reward amounts were conducted at instructive age values
(Supplemental Figure S6) and confirmed that, consequently,
younger participants trended toward elevated accuracy for lower
than higher incentives (10.50 years: pcorectea < -10, 11.50 years:
Peorrected < -10) and older participants were more accurate for
higher than lower incentives (19.50 years: pcorectea < -10,
20.50 years: peorrected < -05). Meanwhile, adolescents did not
demonstrate incentive-based differences in the accuracy of their
responses (15 years: peorrecteda = -888, 16 years: peorrected =
.603). This two-way interaction was qualified by a significant
three-way interaction between age, time, and incentive, x2(2, N=
150) = 9.18, p < .05; Figure 2A. The three-way interaction
contrasts with prior work, as the reward-based titration of accuracy
in adulthood (observed in the preceding two-way interaction) was
evident during the beginning and middle of learning, but not the end
(see intersecting incentive lines across age in the early and middle
panels, but overlapping incentive lines across age in the late panel,
of Figure 2A). This result opposes our third hypothesis, which
predicted that the interacting influence of age and incentive on
cognitive effort would emerge, rather than dissipate, over time.

On the other hand, and in support of our second hypothesis, we
found a marginally significant two-way interaction between age and
difficulty, y*(1, N = 150) = 3.01, p < .10; Figure 2B; accuracy
improved slightly for the easy difficulty context with increasing age
but remained stable for the hard difficulty context. Again, we did not
find evidence for our third hypothesis, which predicted that the
interacting influence of age and difficulty on cognitive effort would
emerge over time, or that there would be interactions between
incentive and difficulty. There were no other significant main effects
or interactions than those listed here (ps > .181). Together, these
results indicate that reward and difficulty information guided how
much cognitive effort was allocated to facilitate accuracy in separable
ways across time and age: higher incentives promoted markedly
more correct responses, especially into adulthood earlier in the task,
while fewer demands promoted slightly more correct responses,
especially into adulthood throughout the task.

We also observed statistically significant main effects and
marginally significant interactions in the mixed-effects model
treating reaction time as the dependent variable (Supplemental
Results). Importantly, however, we verified the absence of speed—
accuracy trade-offs across these two models by conducting a
sensitivity analysis, in which the reaction time mixed-effects
model was run on correct trials only (Supplemental Table S3).

Robustness of Age-Related Change

To ensure that the reported effects of age on accuracy were more
likely to be driven by age-related changes in cognitive and moti-
vational processes, rather than individual differences in constructs
that could influence how cognitive effort is adjusted to reward and
difficulty information across time, we considered the potential roles
of three additional variables. While doing so, we treated age as a


https://osf.io/h9cxv
https://osf.io/h9cxv
https://osf.io/3epua
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp
https://github.com/andlab-harvard/cogeff_paper_phaneuf-hadd
https://github.com/andlab-harvard/cogeff_paper_phaneuf-hadd
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp
https://doi.org/10.1037/xge0001745.supp

publishers.

and is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

This document is copyri

This

PHANEUF-HADD, JACQUES, INSEL, OTTO, AND SOMERVILLE

Figure 2

Accuracy Was Moderated by the Incentives Offered for Correct Responses Across Age and
Time, While Accuracy Was Marginally Moderated by the Difficulty of the Task-Switching Context
Across Age
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Note. (A) Conditioned on the other main effects and interactions in the mixed-effects model, accuracy increased
more rapidly for higher than lower incentives with age. As a result of the differential steepness of these slopes,
younger participants were somewhat more accurate for lower than higher amounts, adolescents’ accuracy was
similar across amounts, and older participants were more accurate for higher than lower amounts. These patterns
were especially true earlier in the learning task. (B) Conditioned on the other main effects and interactions in the
mixed-effects model, accuracy increased slightly more rapidly for the easy than hard difficulty context with age.
The differential steepness of these slopes point to the emergence of marginally greater accuracy for less

demanding blocks into adulthood. Shading represents 95% confidence intervals around fitted lines.

control covariate, rather than as an interacting predictor. First, we
evaluated the role of participants’ baseline task-switching ability, as
a proxy for cognitive control capacity when reward and difficulty
cues are absent. Baseline ability was operationalized as mean
accuracy for the last block of each difficulty context in the practice
phase. Second, we evaluated the role of participants’ intrinsic
motivation to engage in cognitively demanding tasks, measured
using age-appropriate versions of the Need for Cognition scale
(Cacioppo et al., 2013; Keller et al., 2019). Third, we evaluated the
role of participants’ motivation to pursue reward, measured using
age-appropriate versions of the Behavioral Activation System Drive
subscale (Carver & White, 1994; Muris et al., 2005). For full details
of our approach, see Supplemental Methods. Through these follow-
up analyses, we determined that although these constructs explained
some additional variance in learning the value of cognitive effort,
age continued to be a significant predictor of accuracy, even when it
was treated as a covariate (Supplemental Table S4). This collection
of findings confirms that age-related changes in the use of reward
and difficulty information are more central than these constructs are
to understanding when cognitive effort is deployed and withheld.

Fully Instructed Information Alters Overall Task
Demands

To clarify how cognitive effort exertion is regulated when
reward and difficulty information are both instructed, we examined

the interacting influences of age, time, difficulty, and incentive on the
accuracy of responses during the learning task. From the secondary
experiment’s accuracy mixed-effects model (Supplemental Table S5),
we found significant main effects of age, Xz(l, N=150)=9.08,p <
.01, and difficulty, x*(1, N = 150) = 5.55, p < .05. As in the primary
experiment, accuracy increased with age and was greater for the easy
relative to hard difficulty context. Failing to support our fourth
hypothesis, we did not find any other significant main effects or
interactions (ps > .100). These results suggest that explicitly
cueing difficulty information does not simply amplify the effects
observed in the primary experiment. Rather, offering participants
fully instructed information removes the demands imposed by
learning, which may alter how challenging the task environment is
overall, with unique consequences for age-related behavior. An
exploratory one-tailed ¢ test comparing accuracy between the
primary and secondary experiments found that participants were
marginally more correct in the secondary experiment, #(294.81) =
—1.384, p = .084.

Metacognitive Awareness of Cognitive Effort Across Age

We reported above that reward and difficulty guided behavioral
signatures of cognitive effort in age-varying ways. To probe whether
participants throughout the sample had metacognitive awareness of
the differential effort they spent in each condition, we considered
how responses to, “How hard did you try in this galaxy?” tracked
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actual performance during the learning task from the primary
experiment across age. From our effort rating mixed-effects
model, we found a significant main effect of galaxy, x*(3, N =
149) =249.17, p < .001, such that participants of all ages reported
expending greater effort for the galaxies associated with higher
than lower incentives in both difficulty contexts. Surprisingly, an
identical main effect—that perceptions of demand were elevated
for higher incentives rather than harder difficulty contexts—was
found in response to, “How hard was this galaxy?” (Supplemental
Results). The main effect from the effort rating mixed-effects model
was qualified by a significant three-way interaction between age,
accuracy, and galaxy, y*(3, N = 149) = 8.07, p < .05; Figure 3.
Across age, the highest performing participants, the relatively “best
task-switchers,” reported greater effort ratings for the 10 than 1 cent

Figure 3
Metacognitive Awareness of Cognitive Effort Increases With Age for
Relatively Low-Performing Participants
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Note. The figure is faceted by (left panel) participants averaging below-
mean (“low-accuracy”) responses for each difficulty level and (right panel)
participants averaging above-mean (“high-accuracy”) responses for each
difficulty level. A difference greater than O along the y-axis means that
participants reported greater effort ratings for the 10 than 1 cent conditions, a
difference less than 0 means that participants reported greater effort ratings
for the 1 than 10 cent conditions, and a difference of 0 means that participants
reported equivalent effort ratings for the 10 and 1 cent conditions. The
concentration of data above the dashed line at y = 0 demonstrates that
participants of all ages and performance levels endorsed trying harder for
higher incentives. (Right panel) The parallel and overlapping difficulty
context lines for the high-accuracy participants indicate that their greater
effort ratings for the 10 than 1 cent conditions did not change with age or
demand. (Left panel) Contrastingly, the intersecting difficulty context lines
for the low-accuracy participants indicate that their greater effort ratings for
the 10 than 1 cent conditions change with age and demand, such that younger
participants endorsed titrating their cognitive effort according to reward most
in the hard difficulty context while older participants endorsed titrating their
cognitive effort according to reward most in the easy difficulty context.
Adolescents endorsed titrating their cognitive effort according to reward
similarly across difficulty contexts. Shading represents 95% confidence
intervals around fitted lines.

conditions in the easy and hard difficulty contexts alike (Figure 3,
right panel). However, and as predicted by our fifth hypothesis,
effort ratings varied with age, incentives, and difficulty for the
lowest performing participants, the relatively “worst task-switchers”
(Figure 3, left panel). Namely, low-accuracy younger participants
reported greater effort ratings for the 10 than 1 cent conditions,
especially in the hard difficulty contexts. When the task was
more demanding, these participants said that they tried the most for
the larger rewards. Meanwhile, low-accuracy older participants
reported greater effort ratings for the 10 than 1 cent conditions,
especially in the easy difficulty contexts. When the task was less
demanding, and unlike the low-accuracy younger participants,
these low-accuracy older participants said that they tried the most
for the larger rewards. Finally, low-accuracy adolescents reported
greater effort ratings for the 10 than 1 cent conditions in both
difficulty contexts. In other words, low-accuracy adolescent par-
ticipants mirrored the self-reported cognitive effort patterns of the
high-accuracy participants. There were no other significant main
effects or interactions than those listed here (ps > .170).

In sum, the greatest differences in effort ratings between
incentive amounts were for the low-accuracy younger participants
in the hard galaxies and for the low-accuracy older participants in
the easy galaxies. Even though the younger participants exhibited
more correct responses for lower than higher incentives in our
primary experiment’s accuracy mixed-effects model from earlier,
they endorsed the opposite in the post-task ratings, particularly in
the hard difficulty context for worse performers. Older partici-
pants, on the other hand, exhibited more correct responses for
higher than lower incentives in the accuracy mixed-effects model,
which they appropriately endorsed here, particularly in the easy
difficulty context for worse performers. Adolescents responded
similarly for higher and lower incentives in the accuracy mixed-
effects model but endorsed trying harder for the higher than lower
incentive galaxies across difficulty levels; their self-reported
cognitive effort did not translate to their realized performance in
the learning task.

Discussion

The present study examined the ways in which multiple value
signals are detected, integrated, and leveraged to support efficient
cognitive effort exertion in older children through young adults.
This was accomplished by manipulating reward and difficulty
information across two experiments: a primary one in which the
reward cue was instructed but the difficulty cue was learnable, and a
secondary one in which both cues were instructed. In the primary
experiment, we found that reward and difficulty information
directed the deployment of cognitive effort: while less demanding
contexts promoted greater accuracy at the group level, the titration of
effort according to easy and hard difficulty tended to emerge into
adulthood. Similarly, the titration of cognitive effort according to
higher and lower incentives changed with age. Older participants—
especially early in the task—were economically more accurate for
larger earnings, while adolescents were comparably accurate for
smaller and larger earnings alike. Interestingly, these results were
specific to this somewhat more challenging environment, in which
participants were taxed with learning about the difficulty cue. When
we removed learning demands, and effectively made every condition
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in the study easier in a secondary experiment, there was no evidence
that value cues guided behavior increasingly into adulthood.

Even though we found age differences in value-guided perfor-
mance during the task in the primary experiment, participants of all
ages self-reported that they exerted more effort for greater rewards.
Unexpectedly, younger participants performed marginally better
for smaller earnings, despite their self-reports of devoting more
effort to larger earnings. These results are consistent with prior work
demonstrating that adolescents’ goal-directed behavior is motivated
equivalently by different reward amounts (Insel et al., 2017; Rodman
et al., 2021). These results also align with earlier demonstrations
that adults’ cognitive effort decisions are guided by both reward and
difficulty information (Bijleveld et al., 2009; Otto et al., 2022) and
that adults endorse higher demands for greater incentives (Fairclough
& Ewing, 2017). Taken together, this pattern of findings suggests
that which types of information are heeded, and how many sources of
information are heeded, drive maturing estimations of the value of
cognitive effort from late childhood to early adulthood.

A growing body of research reveals that goal-directed behavior
comes to be shaped by varying incentives during the transition from
adolescence into adulthood: while adolescents tend to pursue
reward-associated goals regardless of the magnitude of the reward,
adults’ behavior is modulated by the degree of previous or current
rewards at stake (Cohen et al., 2022; Insel et al., 2017; Rodman
et al., 2021; Stormer et al., 2014). In the primary experiment, this
meant that older participants adaptively upregulated their cognitive
effort when it was most worthwhile—when the benefits of their
effort were greatest, following the higher incentive cue screens. This
was especially true during early and middle learning. This time-
dependent result stands in slight contrast to Otto et al. (2022) but
could be because, by the end of learning, extensive task-switching
experience had accumulated, and cognitive effort could be allocated
sufficiently for both degrees of reward. Alternatively, this time-
dependent result could be because adults have been shown to
rely more on instructed information—Ilike the reward cue—at the
beginning of learning before experiential knowledge takes over
(Decker et al., 2015). In contrast, adolescents tend to make decisions
based on their own, personal exposure to rewarding outcomes
(Deckeretal., 2015). Unlike the older participants, adolescents were
not economical about their cognitive effort exertion, regardless of
how challenging the environment was. They invested similar effort
into higher and lower incentive galaxies. Younger participants were
even less effective at titrating their cognitive effort, performing with
greater precision for the lower than higher incentive galaxies in the
somewhat more demanding primary experiment.

All participants, though, self-reported trying their hardest in
the higher incentive galaxies. This was especially true of low-
performing children and adults in the hard and easy difficulty
contexts, respectively. This result is interesting for two reasons.
First, it concurs with Otto et al. (2022), which suggested that low-
performing adults aimed to be maximally efficient with their
cognitive effort. Like Jane from the Introduction section, these
adults integrated across reward and difficulty information to
selectively engage their effort when the highest rewards were at
stake in the easiest conditions. We found that the low-performing
children did not have this aim in mind. Rather, they intended to
employ their cognitive effort when the highest rewards were at
stake in the hardest conditions—contexts in which their effort was
least worthwhile. Second, this self-report result, combined with

the behavioral data described earlier, suggests that metacognitive
awareness tracked performance more faithfully with increasing
age. Because the older participants endorsed trying most in the
higher incentive galaxies, and they actually performed better in
those galaxies during the task in the primary experiment, they had
the greatest metacognitive awareness of their goal: to engage
cognitive control for the larger rewards, then translate this goal
successfully to action. On the other hand, adolescents and younger
participants failed to translate their goals into actions. Aligning with
previous research, adolescents reported wanting the larger rewards
(Bowers et al., 2021; Fryer, 2011) but did not take the extra step of
tuning their cognitive effort to match their aims (Davidow et al.,
2018). Novelly, since younger participants also reported wanting the
larger rewards but performed better for the opposite, we speculate
that they may have “choked under pressure” while pursuing their
aims (Baumeister, 1984; DeCaro et al., 2011; Mobbs et al., 2009;
Sattizahn et al., 2016). For younger participants, having larger
rewards at stake could imbue a high-pressure environment that
interferes with accurate responding. By intending to excel for the
larger rewards, younger participants may have disposed themselves
to compromise their task-switching performance.

Consistent with prior work, in the primary experiment, we also
found that cognitive effort was increasingly shaped by cueing
varying difficulty levels from childhood to adulthood (Chevalier
et al., 2015; Ganesan & Steinbeis, 2021; Martinez et al., 2018;
Niebaum et al., 2019, 2021). Similar to our reward result, older
participants’ behavior was most modulated by the difficulty
manipulation, with slightly greater accuracy elicited by the most
worthwhile, easier contexts. This could be due to the nature of
difficulty information: when the environment is challenging en-
ough for difficulty information to have some utility, adults may
value knowing how demanding something is, and use this insight
to guide their behavior, to a greater extent than children and
adolescents. This could also be due to the nature of learnable
information: having to associate the planet and moon galaxies with
difficulty levels through repeated experiences could have been a
hindrance to younger participants and adolescents adjusting their
behavior according to demand cues as much as their older par-
ticipant counterparts. Regardless of whether older participants’
behavior was moderated by difficulty or by learnability, adults
may have been the most apt to leverage an additional source of
information in the primary experiment, layered on top of the
incentive cues, because a sophisticated set of decision-making
strategies becomes increasingly available with age (Jacobs &
Klaczynski, 2002). In the face of simultaneous information streams,
perhaps children leaned on the more salient, instructed rewards to
direct their behavior.

Interestingly, in the secondary experiment’s somewhat less
challenging environment, participants of all ages performed better in
the easy than hard difficulty contexts. Given the lack of significant
multiway interactions between age and reward or difficulty, there
was no evidence that older participants uniquely adjusted their
cognitive effort according to incentive or demand information in an
economical manner, as they had in the primary experiment. That is,
in the secondary experiment, younger participants were just as apt
to titrate their cognitive effort according to the difficulty cues in an
adult-like way, which was perhaps inaccessible to them in the
primary experiment. Together, the pair of studies enrich our
understanding of age-related changes in cognitive effort value
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learning by implicating the role of the environment: what sources
of information matter for guiding behavior depends on how well
one can perform in that domain.

Importantly, we substantiated the robustness of these patterns
of age-related changes by investigating several other candidate
mechanisms for inducing individual variability in cognitive effort
value learning. Namely, we evaluated how baseline task-switching
ability, intrinsic motivation to engage in cognitively demanding
tasks, and motivation to pursue reward influenced accuracy. These
supplemental analyses revealed that age was a reliably significant
predictor of performance. Moreover, through further supplemental
analyses, we showed that our findings could not be explained by
simple speed—accuracy trade-offs: the rapidity of responses was
not dependent upon their correctness.

Constraints on Generality

Our population consisted of children, adolescents, and adults
from the United States who had access to a laptop or desktop
computer with a reliable internet connection. These participants
were also screened for a number of exclusion criteria relevant to
their ability to complete an asynchronous, online study. While we
took care to recruit participants across an even age and gender
distribution (Supplemental Figure S1), we did oversample partici-
pants who identified as White/Caucasian. Therefore, our results may
not generalize to populations with relatively reduced technological
access or those with other racial and ethnic identities. Additionally,
these participants were screened for a number of exclusion criteria
thought to influence reward learning, as updating the value of cog-
nitive effort according to incentive information was a core component
of this study. Future research should examine how individuals with
varying neurodivergent identities exert their cognitive effort in
response to instructed reward and learnable difficulty cues.

Moreover, our population was cross-sectional; we sampled
participants from 10 to 20 years, rather than measuring individual
participants at several time points as they aged. Consequently, the
age-related changes in learning the value of cognitive effort that we
report here at the group level may not track at the individual level.
The developmental trajectories of detecting, integrating, and
leveraging reward and difficulty information could vary for single
participants, and further work should address this gap.

We also included 1 and 10 cent incentives as our reward
manipulation. Our finding, that reward-based titration of cognitive
effort emerged into adulthood, may not hold for other degrees of
incentives, or for the presence of incentives. In fact, the mere
availability of reward likely shapes behavior the most during
adolescence (Ernst et al., 2006; Geier & Luna, 2009; Geier et al.,
2010; Strang & Pollak, 2014; but see Magis-Weinberg et al.,
2019). Nonetheless, we note that the relative difference in
rewards—more than absolute magnitude—has been shown to be
the critical moderator of goal-directed behavior across age (Elliott
et al., 2008; Insel & Somerville, 2018; Otto & Vassena, 2021;
Seymour & McClure, 2008).

Similarly, we included 20% and 50% task switch probabilities
as our difficulty manipulation, and our findings may shift for tasks
with different degrees of overall challenge. Indeed, when we fully
instructed reward and difficulty with explicit cues in our secondary
experiment, the entire task became less somewhat demanding,

which minimized how much these information sources guided
cognitive effort. Therefore, it is possible that, in relatively more
challenging contexts, individuals of all ages would call upon dif-
ficulty information to a greater extent to shepherd choices about their
cognitive effort expenditure. We look forward to follow-up studies
with other cognitive control paradigms that impose greater demands
across conditions.

Finally, we recognize that our measures of performance, greater
accuracy and faster reaction time, are not indicative of cognitive
effort investment in all scenarios. Performance-based measures of
cognitive effort can also be affected by internal affordances like
executive functioning capacity (Kramer et al., 2021). Our sample
was evenly distributed from childhood to adulthood because the
present study was designed to identify the effects of incentive and
demand information on cognitive effort allocation across age and
time. A study design with a different sampling strategy (e.g., dense
sampling from a narrower age range but wider executive functioning
capacity range) would be more appropriate for isolating complex
interactions between task performance and individual differences
in executive functioning capacity. Future work should adopt these
alternative sampling strategies to characterize how executive
functioning capacity, and other important individual differences,
influences age-related changes in economical cognitive effort
investment.

Conclusions

In sum, this study furthers our understanding of age-related vari-
ability in the use of cost-benefit analyses to guide cognitive effort
allocation over time. Indeed, we discovered that how cognitive effort
is valued from late childhood to early adulthood depends differentially
on instructed reward and learnable difficulty information. While
older participants, especially early in learning, leverage both types
of information to mobilize their cognitive effort in an economical
manner, younger participants and adolescents claim to modulate their
behavior according to incentive opportunities, but they do not actually
translate their aims into action. This cumulative finding supports prior
work indicating that reward moderates cognitive effort with increasing
age (Insel et al., 2017; Smith et al., 2011). It also indicates that
additional information types—above and beyond proximal rewards—
can be exploited into adulthood as more sophisticated decision
strategies come online and are arbitrated between (Decker et al., 2015;
Smid et al., 2023).

Discovering that the value of cognitive effort changes with age
has important consequences for applied education research. Since
the reward-difficulty cues do not affect behavior uniformly from
childhood to adulthood, or in environments that vary in their
overall challenge, future work should consider how students of
different ages weigh unique sources of information when deciding
how much to try, for instance, on an assignment. If adolescents’
cognitive effort exertion is consistently incentive-insensitive,
signaling that an assignment is paramount for a high schooler by
associating it with a bigger impact on their letter grade may be
ineffectual for promoting their prioritization of that assignment. Of
benefit to this real-world implication and others, characterizing
age-related refinements in learning to titrate cognitive effort in
accordance with multiple cues about its worthwhileness is a crucial
step forward.
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