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Probability matching is a suboptimal behavior that often plagues human decision-making
in simple repeated choice tasks. Despite decades of research, recent studies cannot find
agreement on what choice strategies lead to probability matching. We propose a solution,
showing that two distinct local choice strategies—which make different demands on exec-
utive resources—both result in probability-matching behavior on a global level. By placing
participants in a simple binary prediction task under dual- versus single-task conditions,
we find that individuals with compromised executive resources are driven away from a
one-trial-back strategy (utilized by participants with intact executive resources) and
towards a strategy that integrates a longer window of past outcomes into the current pre-
diction. Crucially, both groups of participants exhibited probability-matching behavior to
the same extent at a global level of analysis. We suggest that these two forms of probability
matching are byproducts of the operation of explicit versus implicit systems.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

One decision-making anomaly of great interest is the
tendency for humans to match their responses to outcome
probabilities in the prediction of binary outcomes. For
example, imagine a series of horse races where one needs
to predict which of two Horses will win. If Horse A wins
65% of the time and Horse B wins 35% of the time, and
each race is conditionally independent of the last, the
optimal prediction strategy would be to predict that Horse
A will win every race. This prediction strategy is called
maximizing.

A large body of research suggests that people predict
events in proportion to their frequency of occurrence, a
strategy known as probability matching. Over the years,
the cognitive mechanisms underlying probability match-
ing have been the topic of much curiosity and speculation
(for a review, see Vulkan, 2000). Under probability match-
. All rights reserved.

).
ing, a person predicts Horse A 65% of the time and Horse B
35% of the time. It is easy to see that this strategy produces
an expected overall accuracy of 54.5% (.65 � .65 + .35 �
.35), which is inferior to that produced by maximizing—
which produces an expected accuracy of 65%. In the
present study, we examine strategies that may underlie
probability matching in independent event sequences.

The psychological mechanisms that give rise to proba-
bility-matching behavior are unclear and are a matter of
ongoing debate. One hypothesis is that probability-
matching arises from the use of a heuristic under which
individuals allocate their responses according to an assess-
ment of the observed outcome probabilities (Koehler &
James, 2009). Under this strategy, termed expectation
matching (EM), the decision-maker’s responses are the
result of integrating a moving window of past outcome
information (Sugrue, Corrado, & Newsome, 2004). To gen-
erate a response, the individual stochastically and inde-
pendently generates predictions in accordance with this
historical assessment of outcome probabilities. Assuming
a sufficiently long historical window, a decision-maker
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utilizing the EM strategy in the horse-racing example
would stochastically allocate 65% of their predictions to
Horse A and 35% of their predictions to Horse B.

Another proposal is that probability-matching behavior
seen at a more global level is the byproduct of a local deci-
sion process called win-stay-lose-shift (WSLS: Herrnstein,
Rachlin, & Laibson, 2000). Under WSLS, individuals persist
in predicting one event, say Event A, until they make an
incorrect prediction, at which point they shift responses
and persist with predicting Event B until they are incorrect.
Under certain task circumstances WSLS is an optimal
choice strategy but it is a suboptimal prediction strategy
in the task outlined above, producing overall response
rates—and hence, accuracy rates—equivalent to probability
matching (Shimp, 1976). There is evidence that people uti-
lize WSLS in the simple binary prediction task described
above (Gaissmaier & Schooler, 2008). Unlike the EM strat-
egy, which involves integrating a comparatively long his-
torical window of outcomes, WSLS requires that the
decision-maker maintain a short-term memory for the
most recent response and outcome.

In the present study, we examined the cognitive de-
mands imposed by the WSLS and EM strategies, with the
idea that decision-makers may utilize both strategies, but
under different circumstances. While both strategies
result in equivalent behavior at a global level—probability
matching—they make different behavioral predictions at
a local, trial-by-trial level. Indeed, the proposal that differ-
ent local choice behaviors can give rise to global matching
behavior has been considered in the animal literature (Hin-
son & Staddon, 1983).

It is well documented that the working memory (WM)
demands of secondary tasks deplete mental resources that
could be used to accomplish primary tasks (Pashler, 1994).
For example, Filoteo, Lauritzen, and Maddox (2010) found
that WM load disrupts learning of explicit, rule-based cat-
egories and drives participants towards the use of an im-
plicit, information-integration strategy. Here, we place
decision-makers under a concurrent working memory load
and find that they exhibit the same global tendency to
probability match as decision-makers without a working
memory load. Using simple models, we demonstrate that
different local strategies result in global probability match-
ing. The distinction between these two matching strategies
is theoretically significant because recent contributions to
the probability-matching literature fail to find common
ground on (a) which strategies may give rise to probabil-
ity-matching behavior, and (b) to what extent these strat-
egies place demands on executive function (Gaissmaier &
Schooler, 2008; Koehler & James, 2009).

One possibility is that WSLS requires maintaining an
active representation of the outcome and response from
the most recent trial and thus imposes a burden on WM
and executive resources, while EM entails gradual integra-
tion of outcome information, and as such, may be charac-
teristic of an implicit learning mechanism (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998). Because re-
search suggests that WM load drives individuals towards
the use of implicit or procedural strategies in classification
(Filoteo et al., 2010; Foerde, Knowlton, & Poldrack, 2006),
and these strategies characteristically entail accrual of
information over many trials, we predict that WM load
should drive participants towards a strategy like EM.
Accordingly, we expect participants without working
memory load to exhibit comparatively greater reliance
on WSLS, which characteristically involves a shorter win-
dow of outcome integration.

We provide converging evidence that WM load engen-
ders usage of implicit strategies by examining participants’
explicit encoding of environmental outcome probabilities
and their self-reported strategy usage. Category learning
work suggests that use of rule-based strategies—which
are thought to rely on explicit processes—can be accurately
verbalized in participants’ self-reports, while information-
integration strategies—which are thought to rely on impli-
cit processes—are not accurately described by participants
(Ashby & Maddox, 2005). As such, we do not expect partic-
ipants’ self-reports, regardless of WM load, to predict mod-
el-assessed EM strategy use. We expect that participants
without WM load will accurately report WSLS use because
they should be able to form declarative knowledge of strat-
egy use.

2. Method

2.1. Participants

One-hundred and sixty students participated for course
credit, assigned to one of two conditions: Dual-Task (DT)
and Single-Task (ST), and were paid one cent per correct
prediction.

2.2. Design and procedure

The main task was predict whether a red square would
appear above a fixation cross or a green square would ap-
pear below the fixation cross, using the keyboard. The se-
quence of events was serially independent, and the
probability of the more common event was p = .65. Partic-
ipants completed 10 practice trials to familiarize them-
selves with the timed procedure, followed by 320 trials.

The prediction task used a deadline procedure to ensure
that a fixed amount of time elapsed each trial. On each
trial, participants saw the word ‘‘PREDICT’’ and had two
seconds to make a response, after which the actual out-
come and visual feedback (‘‘CORRECT’’ or ‘‘INCORRECT’’)
was displayed for one second, followed by a one-second in-
ter-trial interval. The timing of trials was equivalent be-
tween ST and DT conditions.

In the DT condition, two types of tones, high-pitched
(1000 Hz) and low-pitched (500 Hz) were played during
each trial. Each three-second trial was divided into 12
intervals of 250 ms, with tones occurring in intervals
3–10 (500–2500 ms after trial onset). The number of tones
presented each trial varied uniformly between 1 and 3
occurring randomly within intervals 3–10. The base rate
of high tones was determined every 40 trials, varying uni-
formly between .3 and .7. Participants were instructed to
maintain a running count of the number of high tones
while ignoring the low-pitched tones. At the end of each
40-trial block, participants reported their count and were
instructed to restart their count at zero.
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After the main task, participants completed a question-
naire in which they were asked to indicate the probability
of red and green events. They were also given five predic-
tion strategies to evaluate in a hypothetical environment
with a given event base rate (67%). These strategies in-
cluded an EM strategy (‘‘Predict GREEN 67% of the time
regardless of what happened during the last outcome’’), a
maximizing strategy, (‘‘Always predict GREEN, regardless
of what happened during the last outcome’’), and a WSLS
strategy (‘‘Stick with predicting one outcome, and then
change your prediction if you were incorrect on the last
trial’’). Participants were instructed to rank these five strat-
egies from one (best) to five (worst).
1 Under this threshold, deviating implies 31 or more predictions of the
more frequent event (of 40).

2 Intuitively, participants’ usage of WSLS should be reflected by a recency
parameter values near one. As can be seen in Fig. 2, ST participants’ recency
parameters were much lower than one. However, fitting the recency-
weighted averaging model to simulated WSLS choice behavior reveals that
a fairly deterministic WSLS strategy defined by P(shift|lose) = P(stay|-
win) = 0.8 results in recency parameter estimates near 0.3. Thus a partic-
ipant that relies heavily on WSLS will be best fit by recency parameter
values in this range.
3. Results

To ensure that we analyzed the behavior of participants
who exhibited sensitivity to outcomes, we removed data
from 11 ST and 26 DT participants who allocated less than
50% of their responses to more frequent response. One-
hundred and twenty-three participants (53 DT, 70 ST) re-
mained in the analysis that follows.

3.1. Reported event base rates

We calculated absolute deviations between partici-
pants’ offline reported outcome probabilities and true
empirical base rates, finding that DT participants’ re-
ported outcome probabilities (M = .10, SD = .07) deviated
significantly more from observed base rates than ST par-
ticipants (M = .07, SD = .05)[t(121) = 2.21, p < .05, d = .44].
The apparent difference in reporting accuracy suggests
that the secondary task impaired DT participants’ ability
to explicitly encode information about outcome fre-
quencies.

3.2. Overall response rates

Fig. 1A depicts the participants’ overall rates of predict-
ing the more common event over 320 trials. The dashed
line depicts probability matching—that is, if participants
allocated their 65% of their responses to the more frequent
outcome. A 2 (condition) � 2 (trial block) ANOVA revealed
neither a significant main effect of condition, F(1121) = .26,
p = .61, g2

p = .002, nor a significant interaction between con-
dition and trial block, F(1121) = 1.35, p = .25, g2

p = .011,
revealing that the dual task manipulation did not signifi-
cantly alter participants’ tendency to probability-match.
There was a significant main effect of trial block,
F(1121) = 80.71, p < .001, g2

p = .667, suggesting that both
groups may have begun to exhibit response rates greater
than probability matching, mirroring previous work
(Fantino & Esfandiari, 2002).

3.3. Deviation from probability matching

Our main goal is to determine whether matching
behavior arises from different strategies across the ST
and DT conditions. Before comparing strategy usage, we
first determine that both groups were in fact predomi-
nantly matching—and to the same degree. Specifically,
we examined whether the secondary task manipulation af-
fected the degree to which participants deviated signifi-
cantly from matching behavior (that is, allocating 65% of
one’s responses to the more frequent event). For each of
the eight blocks, we calculated the proportion of partici-
pants whose response allocations deviated significantly
from 65%. The proportion of participants in each condition,
by block, that deviated significantly from probability-
matching behavior (Binomial test, a = .051) are shown in
Fig. 1B. We conducted a hierarchical logistic regression
predicting the log odds of deviating with condition and
block as predictors. The effect of block was significant
(the odds of deviating were between 1.65 and 2.03 times
greater each successive block, a = .05), but neither condi-
tion (c = �.56, SE = .92, p = .57), nor the interaction be-
tween condition and trial block (c = �.28, SE = .12, p = .78)
were significant predictors. The apparent null effect of task
condition suggests that the level of matching behavior did
not differ between ST and DT participants.

3.4. Recency-weighted average model

Under WSLS, the decision-maker repeats the previous
trial’s response after a correct prediction and switches
their response after an incorrect prediction. Thus responses
are determined by the outcome on the only the most re-
cent trial. In contrast, EM requires that the decision-maker
integrate a much longer window of previous outcomes,
which in turn informs the decision-maker’s response prob-
abilities. By fitting a simple recency-weighted learning
model (Rescorla & Wagner, 1972) to participants’ choices
we identified the degree to which predictions depended
on recent outcomes. The probability P of the decision-
maker predicting the green event on trial t + 1 is deter-
mined by

Ptþ1 ¼ Pt þ aðOt � PtÞ ð1Þ

where Ot is the outcome on the previous trial, Pt is the pre-
vious estimate of the rate at which the green outcome oc-
curs, and a is a parameter that determines how much
recent outcomes are weighted in updating P. When a is
large, Pt+1 is based only the outcome on trial t, and when
a is small Pt+1 is based on a long window of previous
outcomes.2 We fit this model to each participant’s re-
sponses using maximum likelihood, assuming separate
parameter values across blocks. As shown in Fig. 2, ST
participants had larger estimated learning weights than
DT participants, indicating that prediction strategies em-
ployed by ST participants were influenced more by recent
outcomes. A 2 (condition) � 8 (block) ANOVA revealed a



Fig. 2. Average best-fitting recency parameter values for recency-
weighted average model, by task condition and block. Error bars
represent standard error of the mean.

Fig. 1. Left panel: mean prediction accuracy, by task condition and trial block. ST = single-task condition, DT = dual-task condition. Error bars represent
standard error of the mean. Right panel: proportion of participants deviating significantly from probability-matching (by Binomial test at p = .05 level of
significance) by task condition and trial block. Error bars represent standard error of proportion.
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significant main effect of task condition, F(1121) = 5.28,
p < .05, g2

p = .044, but no effect of block, F(1121) = 2.30,
p = .13, g2

p = .019 and a no interaction between condition
and trial block, F(1121) = 2.50, p = .12, g2

p = .021, suggesting
ST participants exhibited choice behavior more character-
istic of WSLS—dependence on only the most recent tri-
als—while DT participants used a strategy characteristic
of the EM strategy—involving integration a longer window
of past outcomes.

3.5. Models of the two prediction strategies

To more directly address usage of these strategies, we
compared the relative goodness-of-fit of two models that
instantiated the WSLS and EM strategies. To examine WSLS
usage, we fit a one-parameter WSLS model to participants’
choices, constraining P(shift|lose) = P(stay|win), hypothesiz-
ing that ST participants would be better fit by this model
than DT participants. To measure EM usage, we fit a model
whose probability of making a green prediction at trial t is
equal to the proportion of green outcomes in a growing
historical window of outcomes leading up to time t. This
zero-parameter model assumes that responses are deter-
mined stochastically and independently. One crucial differ-
ence between these two models is the dependence of the
response on trial t to the outcome on trial t � 1. We fit both
models to each participant’s choice data using maximum
likelihood estimation, and compared the relative good-
ness-of-fit of the models using the Akaike Information
Criteria (AIC; Akaike, 1974) to correct for differing num-
bers of parameters. A lower AIC value for a model indicates
a better fit. Intuitively, AICEM � AICWSLS yields a measure of
how much better a participant is described by WSLS com-
pared to EM.

We predicted that the WSLS model would do a better
job (relative to EM) of describing ST participants than DT
participants. Fig. 3 depicts the relative goodness-of-fit be-
tween the two models, for each condition across the 8
blocks. Indeed, the likelihood ratios reveal that ST partici-
pants were better described by the WSLS model than the
responses of DT participants, and conversely, DT partici-
pants were better described by the EM model. A 2 (task
condition) � 8 (trial block) ANOVA revealed a significant
main effect of task condition, F(1121) = 11.97, p < .001,
g2

p = .099, a main effect of trial block, F(1121) = 36.63,
p < .001, g2

p = .303, and no significant interaction between
task condition and trial block, F(1121) = .62, p = .43,
g2

p = .005. The main effect of task condition suggests that
working memory load influenced the prediction strategies
utilized by decision-makers.
3.6. Strategy self-reports

As discussed above, we predicted that if WSLS is an ex-
plicit strategy and EM is not, that in a single-task setting



Fig. 3. Comparison of model goodness-of-fit between WSLS and EM
models. Average AIC value differences, calculated as AICEM � AICWSLS

using best-fitting parameter values for each block of each participants’
choices. Error bars represent standard error of the mean.

Table 1
Correlations between self-reports of prediction strategy and model good-
ness-of-fit. Note that smaller AIC values indicates a better model fit, and
larger self-report values indicate greater endorsement of a strategy.

Correlation between self-report and model goodness-
of-fit (AIC)

Condition WSLS EM

Single-Task r(68) = �.36, p < .001 r(68) = .15, p = .23
Dual-Task r(51) = �.02, p = .90 r(51) = .06, p = .64
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people should be able to predict their use of WSLS, but not
EM. In a dual-task setting, identifying any strategy explic-
itly may be impaired by the WM load. To examine this pre-
diction, we related participants’ offline endorsement of the
strategies that were described in the questionnaire to the
model fits for each strategy. We compared participants’
relative preference for the WSLS over EM by their subtract-
ing their ranking of the WSLS strategy from their ranking of
the EM strategy, yielding a measure of endorsement of
WSLS (note that this measure is equally informative about
EM). Table 1 reports correlations between endorsement
and overall model goodness-of-fit (because AIC is used,
negative correlations indicate predictive relationships). As
hypothesized, neither condition’s endorsement of EM cor-
related with model goodness-of-fit. However, self-reports
of ST participants accurately predict WSLS usage while
those of DT participants do not.3 Regressing AICWSLS against
3 Maximizing is another type of explicit strategy, and hence, even though
it was rare (though more likely in later blocks), we predicted a significant
correlation between maximizing strategy use and self-reports. As a proxy
for maximizing behavior, we fit a modified EM model to the second half of
participants’ choice data, which predicts always choosing the higher-
frequency outcome in its history. Our prediction was confirmed: AICMAX

significantly correlated with participants’ rankings of the maximization
strategy, r(115) = �.23, p = .01. These correlations did not differ signifi-
cantly between the ST group, r(67) = �.22, p = .06, and the DT group,
r(48) = �.23, p = .10 [z = �.02, p = .98].
WM load and WSLS endorsement confirmed this interaction
between WM load and strategy endorsement (b = 8.80,
SE = 3.48, p < .05).

4. Discussion

We investigated the effect of a concurrent WM
load—which is believed to disrupt explicit (or declarative)
learning on individuals’ prediction behavior in a sequen-
tially independent series of outcomes. While both Single-
Task (ST) and Dual-Task (DT) participants appeared to
probability-match to the same extent globally, model-
based analyses suggest that WM load drove local choice
behavior away from win-stay-lose-shift (WSLS)—under
which, choices rely on the most recent outcome—and
towards expectation matching (EM), which relies on out-
comes integrated over a longer historical window. The
depletion of WM resources resulted in reliance upon a
larger window of past information, which is somewhat
counterintuitive but also consistent with contemporary
distinctions of explicit/implicit processing (e.g., Ashby &
Maddox, 2005; Henke, 2010).

Our results are interesting in the context of previous
Dual-Task studies. Foerde and colleagues (2006) found that
a concurrent WM load during probabilistic classification
learning impaired participants’ acquisition of explicit asso-
ciations between perceptual cues and outcomes, although
these participants evidenced implicit learning of cue-out-
come contingencies. Further, they were unable to flexibly
apply cue knowledge offline, suggesting that WM load
engenders the use of implicit learning systems. Likewise,
the present study found a discrepancy between ST and
DT groups’ ability to explicitly encode knowledge about
outcome frequencies and identify strategies they em-
ployed. These discrepancies, taken in conjunction with
model-based analyses identifying choice strategies, sup-
port our view that WSLS and EM are characteristic of expli-
cit and implicit modes of operation respectively.4 Whether
these two strategies depend on two distinct neural sys-
tems or a single system operating in disparate modes is
matter of future investigation.

Previous work has examined the effects of a verbal WM
load on prediction behavior in a task similar to ours
(Wolford, Newman, Miller, & Wig, 2004), finding that
memory load rendered decision-makers less likely to prob-
ability-match and more likely to maximize. While we
found no significant differences in maximizing behavior
between ST and DT participants, there are two important
differences between these studies that could explain the
divergent results: our secondary task was likely more
difficult, and our outcome base rates were closer to
equiprobable (65% compared to 75%) which is unlikely to
foster maximization.
4 Though we assume an implicit versus explicit distinction to account for
our results, another possibility is that the strategies differ in their
complexity, and thus, the amount of working memory required to reflect
upon and identify them later during the strategy reports. Our results cannot
distinguish between these accounts, but future studies may vary these
factors independently to identify the degree to which complexity accounts
for the results presented here. We thank an anonymous reviewer for
pointing out this possibility.
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It has been proposed that in probabilistic and sequen-
tially independent tasks decision-makers may form incor-
rect beliefs about the outcome-generating process, which,
in turn, inform prediction behavior (Green, Benson,
Kersten, & Schrater, 2010). Under one proposal, molar-
level probability matching may result from a search for
deterministic patterns in an attempt to achieve higher
accuracy (Gaissmaier & Schooler, 2008; Wolford, Miller, &
Gazzaniga, 2000). As this work suggests pattern search is
WM-intensive, it is unlikely that DT participants would
have engaged in search. The present results do not rule
out the possibility that ST participants could have engaged
in a pattern search. However, this strategy is not readily
identifiable with the descriptive modeling approach taken
here. Future work is needed to develop models that can
identify a pattern-search strategy, and further, to investi-
gate the effect of a WM memory load on this strategy.
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