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Accounts of decision-making have long posited the operation of
separate, competing valuation systems in the control of choice
behavior. Recent theoretical and experimental advances suggest
that this classic distinction between habitual and goal-directed (or
more generally, automatic and controlled) choice may arise from
two computational strategies for reinforcement learning, called
model-free and model-based learning. Popular neurocomputa-
tional accounts of reward processing emphasize the involvement
of the dopaminergic system in model-free learning and prefrontal,
central executive–dependent control systems in model-based
choice. Here we hypothesized that the hypothalamic-pituitary-
adrenal (HPA) axis stress response—believed to have detrimental
effects on prefrontal cortex function—should selectively attenuate
model-based contributions to behavior. To test this, we paired an
acute stressor with a sequential decision-making task that affords
distinguishing the relative contributions of the two learning strat-
egies. We assessed baseline working-memory (WM) capacity and
used salivary cortisol levels to measure HPA axis stress response.
We found that stress response attenuates the contribution of
model-based, but not model-free, contributions to behavior. More-
over, stress-induced behavioral changes were modulated by indi-
vidual WM capacity, such that low-WM-capacity individuals were
more susceptible to detrimental stress effects than high-WM-
capacity individuals. These results enrich existing accounts of the
interplay between acute stress, working memory, and prefrontal
function and suggest that executive function may be protective
against the deleterious effects of acute stress.

Anumber of accounts of human and animal decision-making
posit the coexistence of separate valuation systems that

control choice (1–4), which, broadly speaking, represent auto-
matic or habitual vs. deliberative or controlled modes. The cir-
cumstances under which one system may dominate over the
other and thereby exert control over behavior has been a ques-
tion of interest in both neuroscience and psychology, in part
because of the implications of such differential control for dis-
orders of compulsion such as drug abuse (5, 6). Acute stress may
afford unique leverage in isolating the properties of these sys-
tems, because it is believed to prompt a shift from more cognitive
or deliberative processes to more automatic processes presumed
to be underpinned by phylogenetically older brain structures (7).
Accordingly, a spate of recent work suggests that acute stress—

indexed by changes in levels of cortisol, a neuroendocrine marker
of stress response—engenders reliance on putative habitual and/
or automatic processes in human decision-making (8–13), con-
sistent with the assumption that the physiological stress response
impairs central executive functions subserving more deliberative
choice. However, distinguishing such processes is both experi-
mentally and theoretically fraught, because in dual process the-
ories, which system controls a particular behavior is typically
ambiguous, and can only be recognized by characteristics (such
as reaction times or conscious access) associated in different
theories with either sort of control, and often only in the com-
parison between different tasks that promote either mode. Here
we leverage a more operational version of this distinction based
on reinforcement learning (RL) theory (1), which proposes that
deliberative and automatic modes of decision-making arise from

two distinct computationally precise and neurobiologically groun-
ded learning strategies for evaluating actions from previous expe-
riences. This approach allows us to characterize more precisely and
within a single task the impact of physiological stress response upon
trial-by-trial learning dynamics of either sort.
This RL framework (1) posits that choice behavior arises from

a combination of two value learning systems that operate in
parallel and whose fundamental difference is whether they rely
on an “internal model” of task contingencies for evaluating
choices. The model-based system is computationally sophisti-
cated and learns a model of the environment to plan candidate
courses of action prospectively. In contrast, the model-free sys-
tem eschews this model and merely prescribes that previously
rewarded actions are repeated, akin to the Law of Effect and
to prominent theories in which dopaminergic prediction error
responses drive learning about action preferences at target areas
such as the striatum (14, 15). Because these hypothesized modes
of choice are defined quantitatively as arising from different
trial-by-trial learning rules, they make clear and divergent
predictions about subjects’ trial-by-trial adjustment of decision
preferences in response to feedback, enabling the contributions
of both approaches to be dissociated experimentally. In fact,
many laboratory choice tasks cannot differentiate between the
contributions of the learning strategies, because when each ac-
tion is paired with a single reward, the two sorts of value learning
reduce to the same learning rule. However, the strategies differ
appreciably in sequentially structured choice tasks. Recent work,
informed by this approach, reveals that under normal circum-
stances, human learning in such tasks exhibits contributions of
both putative systems (16–18). The grounding of these theories in
neurocomputational models (19) and work on animal learning (4)
also provides a unique perspective on dual process architectures,
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complementary to a set of views whose roots lie more in human
cognitive neuroscience.
In line with the considerable computational requirements of

model-based evaluation (1, 20), and with evidence that this process
relies on the prefrontal cortex (PFC, 4), recent work suggests that
the model-based system imposes considerable demands on central
executive resources. In particular, depletion of working-memory
(WM) resources abolishes model-based contributions to learning
behavior but spares model-free contributions (21). At the same
time, a different line of work examining central executive function
under acute stress reveals how neurophysiological stress response
engenders WM capacity impairment (22, 23) and reduction of
WM-related activity in the PFC as assessed by neuroimaging (24).
On the basis of these two lines of work, an intuitive prediction

emerges: stress response—as it deleteriously impacts the PFC-
dependent executive resources—should selectively reduce model-
based learning, but simultaneously spare model-free learning.
Closely supporting this prediction, previous investigations reveal
that acute stress engenders reliance on habitual behaviors, at the
expense of flexible, goal-directed responding. However, because
the two forms of choice were differentiated by posttraining probe
trials—testing flexible sensitivity to reinforcer devaluation (25)
or to a conjunction of spatial cues (26)—it remains to be in-
vestigated how and whether stress affects either of the two sorts
of trial-by-trial learning dynamics that have been hypothesized
to give rise to the endpoint behaviors probed there (1).
A complimentary possibility is suggested by findings that acute

stress can increase firing rates of dopaminergic neurons (27) and
extracellular dopamine levels in the neural structures putatively
underpinning model-free RL (28). We might thus expect, alter-
nately or additionally, that stress would modulate or even
strengthen model-free learning. There is indeed recent evidence
for effects of stress on probabilistic reward learning (29, 30).
However, the task used does not permit differentiating model-
based from model-free contributions to learning.
Here we elucidate the impact of hypothalamic-pituitary-adrenal

(HPA) axis stress response on the expression of model-based and
model-free contributions to sequential choice behavior. In the RL
task we use (16) model-based and model-free learning strategies—
distinguished, respectively, by their utilization and ignorance of
the full environment structure—that give rise to distinct and quan-
tifiable behavioral signatures. Our results reveal how the physio-
logical stress response attenuates the influence of model-based (but
not model-free) learning, underlining the distinct and separable
contributions of these theorized valuation systems.
Further, in line with the central-executive–dependent nature

of the model-based system, we shed light on how individual
differences in WM capacity (often taken as a general measure of
executive function and fluid intelligence, 31), modulate the effect

of physiological stress response on model-based choice. Specifi-
cally, we demonstrate that subjects with more executive resour-
ces to spare find themselves less susceptible to the behavioral
changes brought about by stress response, elucidating the in-
terplay between acute stress, executive function, and dual-system
accounts of decision-making.

Results
Subjects performed 200 trials of a two-step RL task (Fig. 1) (22,
29), designed to dissociate model-free and model-based learning
strategies. In each two-stage trial, subjects made an initial first-
stage choice between two options (depicted as fractals), which
probabilistically leads to one of two second-stage states (colored
green or blue). In each of these subsequent states, subjects made
another choice between two options, which were associated with
different probabilities of monetary reward. Choosing the left
action at the first stage usually leads to the green state (70% of
the time, a common transition) but sometimes leads to the blue
state (30% of the time, a rare transition). Because the reward
probabilities associated with second-stage choices drift over time
according to independent random walks, subjects need to make
trial-by-trial adjustments to their choices at both stages to ef-
fectively maximize payoffs.
Model-based and model-free strategies make different pre-

dictions about how the history of rewards received at the second
stage should influence first-stage choices, owing to the fact that
the model-free approach evaluates actions retrospectively, by
learning to repeat actions that tend to be rewarded, whereas
model-based learning evaluates actions prospectively, in terms
a learned model of their likely consequences. For example, con-
sider a first-stage choice that results in a rare transition to a sec-
ond-stage state, and the subsequent second-stage choice is
rewarded. Under a pure model-free strategy, by virtue of the re-
inforcement principle [or the temporal difference (TD) algorithm
(λÞ for λ> 0 ], one would have an increased chance of repeating
the same first-stage response because it ultimately resulted in
reward. In contrast, a model-based strategy—using a model of
the task’s transition structure—predicts a decreased tendency to
repeat the same first-stage action because the other first-stage
action is the one that is more likely to lead to that rewarded
second-stage state.
Accordingly, below we examine how stress alters the learning

systems’ contributions by examining trial-by-trial adjustments in
choices as subjects receive feedback. First, by formalizing each
system’s learning (1) with a trial-by-trial mathematical model and
fitting it to subjects’ choices, we measure how stress response
affects the relative expression of the two learning systems. Next,
we probe how stress impacts more qualitative signatures of
each system, by examining trial-by-trial staying or switching in
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Fig. 1. State transition and reward structure in the
two-step RL task. Each first-stage choice (black
background) is predominantly associated with one
or the other of the second-stage states (green and
blue backgrounds) and leads there 70% of the time.
These second-stage choices are probabilistically
reinforced with money, whose reward probabilities
change over the course of the experiment (see
Results for a detailed explanation).
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response to choice outcomes, for which the two accounts of
learning predict different patterns.

Physiological and Subjective Response to Stress. We manipulated
stress levels by having subjects undergo either the cold pressor
test (CPT) task (32), an acute stress induction in which subjects
submerged their arms in ice water for 3 min, or a control task
using room temperature water. Baseline-subtracted cortisol
concentrations over the four samples are plotted in Fig. 2 (raw
data provided in Table S1). Critically, we found a significant
interaction between condition (stress/control) and time of cor-
tisol measurement (F = 19.99, P < 0.0001), indicating that the
acute stressor induced a marked cortisol response. Moreover,
within groups, cortisol concentrations did not change signifi-
cantly between s3 and s4 (P > 0.54), suggesting cortisol con-
centrations remained steady throughout the RL task. Subjects in
the stress condition reported that the CPT was significantly more
unpleasant [mean (M) = 6.68, SD = 0.54] than control subjects
(M = 2.19, SD = 0.38, t = 6.95, P < 0.001), indicating that the
manipulation evoked a subjective stress response.

Stress Response and Model-Based Behavioral Contributions. We fit
a dual-system RL model—a computational instantiation of the
principles governing two hypothesized choice systems (16, 18)—
to subjects’ trial-by-trial choices (SI Text). This model consists of
a model-free system that updates estimates of choice values us-
ing TD learning and a model-based system that learns a transi-
tion and reward model of the task and uses these to compute
choice values on the fly. The model includes parameters con-
trolling the influence of each system in determining choice and

a learning rate controlling the decay timescale over which past
rewards are considered in the systems’ learning. We used hier-
archical Bayesian model-fitting techniques (33) to estimate
these parameters (Table S2).
Critically, how subjects adjust their trial-by-trial choice pref-

erences in response to feedback reveals the extent to which they
rely on either system. Table 1 reports the estimated parameters.
Mirroring findings from previous work (16, 21, 34, 35) that both
strategies influenced behavior, βMF and βMB, which quantify
the weight given to model-free and model-based values in de-
termining choice, respectively, were both significantly positive.
We additionally estimated the extent to which each of these
parameters changed with the stress response (quantified by
cortisol delta; Materials and Methods). The parameter βMBcort;
which quantifies change in model-based contribution as a func-
tion of an individual subject’s stress response, was significantly
negative, indicating that model-based contributions decreased as
stress response increased (Fig. 3A). We further hypothesized
that, as model-free choice does not impose the same require-
ments on central executive resources as model-based choice,
stress should not impact the contribution of a model-free strat-
egy. Indeed, βMFcort was not significantly different from zero,
indicating that cortisol delta (i.e., stress response) did not alter
model-free contributions (Fig. 3B).

Individual Differences in WM Capacity. We examined how individual
WM capacity—operationalized by Operation Span (OSPAN;
Materials and Methods)—modulates the effect of cortisol re-
sponse on model-based choice. The parameter βMBcxo, which
quantifies the change in model-based contribution as a func-
tion of the interaction between OSPAN and stress response,
was significantly positive. The positive relationship indicates
that subjects with lower WM capacities were more susceptible
to the effect of cortisol delta on model-based choice contribution,
whereas subjects with higher WM capacities were effectively
shielded from this effect.
This relationship is visualized in Fig. 4, by dividing subjects

into low and high WM capacities according to a median split:
among subjects low in WM capacity, cortisol delta reduced the
expression of model-based choice (Fig. 4A), but among subjects
high in WM capacity, cortisol response did not produce an ap-
preciable impact on model-based contributions to behavior (Fig.
4B). Furthermore, as the predicted locus of the OSPAN shielding
effect is model-based (but not model-free) contributions, we
found that OSPAN did not interact significantly with the re-
lationship between cortisol response and previous reward, the
marker for model-free learning (i.e., βMFcxo was not significantly
different from zero; Table 1).

Logistic Regression Analysis. To more directly characterize the
effect of stress and OSPAN on learning, we examined how the
outcomes of each trial impact the next trial’s choice, an approach
taken in previous work (16, 21, 32). This restricted analysis
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Fig. 2. Cortisol was significantly elevated among stress subjects, relative to
controls, at the two time points following administration of the CPT (s3 and
s4). Error bars denote SEM.
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Fig. 3. Effect of stress on model-based vs. model-
free value weights, as determined by the compu-
tational model. (A) Individual subjects’ model-based
value weights, plotted separately for subjects in the
control and stress conditions. There was a significant
negative effect of cortisol delta on expression of
model-based learning, indicating cortisol change
diminished its behavioral expression. (B) Model-free
contribution to behavior. Note that there was no
significant effect of cortisol change on expression of
model-free choice, indicating that expression of
model-free contribution is spared. Regression lines
are computed from the population-level estimate
of the log-linear effect of stress on model-based
weight. Dashed gray lines indicate 2 SEs.
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permits a more direct and qualitative examination of model-
based and model-free contributions to trial-by-trial learning,
because the two strategies make qualitatively distinct pre-
dictions about how the reward (rewarded vs. unrewarded) and
transition type (common vs. rare) on the immediately preceding
trial should influence first-stage choices (Fig. 5). A pure model-
free strategy prescribes that the previous reward should in-
fluence whether a first-stage action is repeated, independent of
which state (common or rare) it was received in. Thus, this al-
gorithm predicts only a main effect of reward. In contrast,
a model-based strategy predicts an interaction between the two
factors because the effect of the previous reward on the first-
stage choice depends on which state it was received. Note that,
although both systems (in principle and empirically as estimated
above) learn incrementally so that multiple preceding trials’
outcomes influence each choice, these qualitative effects of the
single most recent trial still hold.
The regression analysis confirmed the basic signatures of model-

free and model-based strategies as described by the computational
model, expressed as significant effects of both previous reward
and the interaction between previous reward and transition type
(P < 0.001; Table 2, Table S3, and Fig. S1). Moreover, the re-
gression revealed that stress effectively attenuated the model-
based learning, expressed as the negative interaction between
cortisol response, previous reward, and transition type (P < 0.01),
but not model-free learning, expressed as the simple effect of
previous reward (P > 0.5).
We also specified a model examining how cortisol delta and

OSPAN interacted with the same trial-by-trial variables in the
above analysis (Table S4). Critically, OSPAN significantly
interacted with the three-way interaction between cortisol re-
sponse, previous reward, and previous transition type (the in-
teraction signifying cortisol response’s effect on model-based
choice, P < 0.01). The positive coefficient indicates that subjects
with lower WM capacities were more susceptible to stress’
effects on model-based learning, corroborating the computa-
tional model fits (Fig. S2).

Discussion
Although a recent body of work has sought to understand the
impact of stress on decision-making through a dual-systems
framework (10, 36), in the absence of a clear computational
framework for valuation, it is difficult to determine the locus of
the stress-induced breakdown. Recent work (16, 18) suggests that
sequential choice results from two distinct learning strategies for
determining choice value from previous experience. Moreover,
although dual-process accounts in psychology emphasize the role
of WM capacity in determining reliance on and behavioral ex-
pression of the two systems (37, 38), the dependence of the two
hypothesized modes of choice on central executive resources is
not well understood (39). Leveraging a contemporary RL-based
framework (1) in which the behavioral contributions of model-
based and model-free strategies are separately identifiable and
their differential demands on the central executive resources have
been characterized (21), we reveal how neurophysiological
stress response diminishes the contribution of a computationally
expensive, model-based choice strategy but leaves intact the
contribution of the more parsimonious model-free valuation
system. This approach yields a rich picture of acute stress’ im-
pact on decision-making as it ties together lines of work examining
stress response and PFC-dependent executive functions and dual-
system theories of choice.
Perhaps more striking is that individual WM capacity—

closely related to fluid intelligence and general cognitive ability
(31)—appears to protect decision-makers from the deleterious
effects of stress response. That is, we found that cortisol re-
activity hampers the expression of model-based choice in low,
but not high, WM capacity individuals. This result dovetails with
notion of “cognitive reserve” in neuropsychology (40). On this
view, individual differences in cognitive ability (often oper-
ationalized as IQ) allow some people to cope better than others
with brain insult. It is conceivable, in the present study, that
individuals with greater processing capacity (indexed here by
OSPAN) were less burdened by the computational expense of
model-based choice (20) and thus, found their choices less se-
verely impacted by HPA axis response. Indeed, such individual
differences could elucidate the considerable heterogeneity found
in stress-induced changes to decision-making (36): individuals with

Table 1. Medians and 95% CI boundaries for the four parameters of interest, relating stress and
OSPAN to model-based and model-free contributions

Parameter Description Median Lower 95% Upper 95%

βMB Model-based weight 0.313 0.149 0.492
βMF Model-free weight 0.693 0.533 0.88
βMBcort Cortisol effect on model-based weight −0.2261 −0.4011 −0.0552
βMFcort Cortisol effect on model-free weight 0.0069 −0.1693 0.1870
βMBcxo Cortisol × OSPAN effect on model-based weight 0.4201 0.1341 0.7508
βMFcxo Cortisol × OSPAN effect on model-free weight 0.0211 −0.2291 0.2723
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Fig. 4. Effect of stress on model-based learning as
a function of individual WM capacity, as measured
by OSPAN. Individual subjects’ model-based value
weights are plotted for low OSPAN subjects (A) and
high OSPAN subjects (B). Cortisol response markedly
dampened expression of model-based choice in the
low OSPAN subgroup but not in the high OSPAN
subgroup. Regression lines are computed from the
population-level estimate of the log-linear effect of
stress on model-based weight. Dashed gray lines
indicate 2 SEs.
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larger executive capacities could find their behavior less com-
promised by the HPA axis response.
The effects of acute stress on dopamine (28, 41) are the most

obvious candidate for a mechanism by which stress might affect
either model-based [via PFC (4)] or model-free [via striatum
(19)] learning. Although the early sympathetic nervous system
component of the stress response is known to result in rapid
release of catecholamines in the PFC and other areas, and the
resulting increase of dopamine (DA) levels is deleterious to
PFC-dependent functions such as WM maintenance (7), our
study focuses on the HPA axis stress response, for the simple,
practical reason that the RL task takes time to administer. The
release of glucocorticoids, indexed here by changes in cortisol
levels, is observed to prolong this typically short-lived DA release
in the PFC, among other regions (7, 41, 42). It is conceivable
then that supraoptimal levels of DA (43) induced after the
stressor and perpetuated by increases in cortisol release underlie
the stress-induced deficits in central-executive–dependent, model-
based behavior observed here.
In principle, a synergistic effect to weakening model-based

learning might be strengthening model-free learning. Dopami-
nergic effects of stress might have been expected to produce such
an effect as well, because increased striatal DA levels brought
about by stress are hypothesized to increase overall sensitivity to
reward (44). Although we found no such effect in our data, recent
human probabilistic learning results may support this hypothesis
(30). The probabilistic selection task used there does not formally
dissociate model-free from model-based learning, but unlike our
task, it does dissociate learning to choose vs. avoid—the locus of
the reported stress effect.
Characterizing more precisely how neurophysiological stress

response alters the expression of the two hypothesized valuations

systems is of practical importance because acute stress is believed
to facilitate drug-seeking and relapse (45). At the same time,
prominent accounts of addiction (6) ascribe these compulsive
behaviors to aberrant expression of the habitual system (in-
stantiated here as the model-free system) at the expense of the
goal-directed action (instantiated here as the model-based sys-
tem). The finding that HPA axis response selectively reduces
model-based contributions to behavior dovetails neatly with
these accounts: perhaps the drug-seeking and/or relapse engen-
dered by acute stress can be explained in part by a breakdown of
the prospective, model-based valuation system.
Although the breakdown of top-down and prefrontal-dependent

functions (7) is assumed to underlie the deleterious effects of
neurophysiological stress response on model-based choice, a re-
source-allocation explanation of these results merits speculation
here. One influential proposal suggests that people adapt to
stress by falling back on strategies with fewer cognitive demands
and in doing so, preventing unreliable performance that would
ensue from failure to carry out more resource-demanding strat-
egies (46). A recent, more computational proposal (20) frames
the arbitration between model-based vs. model-free RL as
a tradeoff between time cost and behavioral flexibility, both of
which are high in model-based but low in model-free RL. Were
the neurophysiological stress response to promote internal time
pressure, we would expect the effects observed here. However,
whether people register, implicitly or explicitly, the temporal and
cognitive costs of model-based choice warrants future research.

Materials and Methods
Participants. Fifty-six healthy individuals from the New York University
community participated in this experiment (30 women, age: M = 25.67 y;
SD = 7.27 y) and were paid 5 cents per rewarded trial to incentivize
performance. The proportions of women in control and stress conditions
were 0.50 and 0.58, respectively. All participants provided written in-
formed consent in accordance with procedures approved by the New York
University Committee on Activities Involving Human Subjects. Following
previous work (21), we identified and excluded participants who failed to
demonstrate engagement with the choice task. Specifically, we excluded data
of four participants who failed to meet a response deadline greater than 15
times. We used a further step to remove participants who failed to demon-
strate sensitivity to rewards in the decision task using second-stage choices,
excluding the data of four participants who repeated previously rewarded
second-stage responses—i.e., P(stayjwin)—at a rate less than 50%.

Cortisol Measurement. To assess stress responses, saliva samples were collected
throughout the task to assess cortisol concentrations. Samples were collected
using an absorbent oral swab that participants placed under their tongues for
2 min. To control for diurnal rhythms in cortisol levels, all participants were
run between the hours of 1:00 and 6:00 PM. Sample collection occurred at
baseline after a 10-min acclimation period (s1), immediately after OSPAN
measurement and task instructions (s2, ∼25 min after s1), 10 min after CPT
administration (s3, ∼43 min after s1), and immediately following the RL task
(s4, ∼64 min after s1). Cortisol responses to stress were expected to peak
during the RL task (10 min after the stress manipulation) (32). Samples were
frozen and preserved immediately after testing at −30 °C and were trans-
ported frozen to a Clinical Laboratory Improvement Amendments-certified
analytical laboratory where cortisol concentrations were determined with
high-sensitivity enzyme immunoassay kits (Salimetrics). Duplicate assays
were conducted for each sample interval, and the average of the two values
was used in our analyses. Because of the skewed nature of cortisol con-
centration distributions, these values were log-transformed in all statistical
tests (29). For each subject, cortisol delta was calculated by subtracting the
average of s1 and s2 (pre-CPT) from the average of s3 and s4 (post-CPT).

OSPAN Measurement. To assess working memory capacity, we administered
an automated version of the OSPAN procedure (47), which required par-
ticipants to remember a series of letters while performing a series of arith-
metic problems and which lasted ∼15 min. OSPAN scores were calculated by
summing the number of letters selected for all correctly selected sets and
ranged from 11 to 75 (M = 48.08, SD = 17.61).
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Fig. 5. (A) A model-based based choice strategy predicts that rewards after
rare transitions should affect the value of the unchosen first-stage option,
leading to a predicted interaction between the factors of reward and
transition probability. (B) In contrast, a model-free strategy predicts that
a first-stage choice resulting in reward is more likely to be repeated on the
subsequent trial regardless of whether that reward occurred after a common
or rare transition.

Table 2. Logistic regression coefficients indicating the influence
of cortisol response, outcome of previous trial, and transition
type of previous trial, on response repetition

Coefficient Estimate (SE) P value

(Intercept) 1.84 (0.16) <0.0001*
Reward 0.80 (0.09) <0.0001*
Transition 0.10 (0.05) 0.060
Cortisol delta 0.06 (0.16) 0.712
Reward × transition 0.25 (0.06) <0.0001*
Cortisol delta × reward 0.05 (0.09) 0.554
Cortisol delta × transition −0.07 (0.06) 0.180
Cortisol delta × reward × transition −0.14 (0.06) 0.018*

*Significance at the 0.05 level.
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Stress Induction. In the stress condition, subjects were administered the CPT,
described previously (33). Briefly, subjects in the stress condition were asked
to immerse their right hand up to and including the wrist for 3 min in ice
water (0–5 °C). Subjects in the control condition submerged their right hand
up to and including the wrist for 3 min into room temperature water (21–
30 °C). Immediately after, subjects indicated on a scale ranging from 0 (not at
all) to 10 (very much) how unpleasant they found the immersion procedure.

RL Task. Immediately after the OSPAN procedure, participants were given the
task instructions and completed 10 practice trials to familiarize themselves
with the task structure and response procedure. Note that at this point, the
control and stress groups were subject to the identical procedure, and thus
differences in choice behavior could not be attributable to the conditions
under which task instructions were given. Following administration of the
cold pressor test and cortisol sample s3, participants completed 200 trials of
the two-step RL task (Fig. 1A) immediately after sample s3 was taken. In the
first step, two fractal images appeared on a black background (indicating
the initial state), and there was a 1.5-s response window in which partic-
ipants could choose the left- or right-hand response using the Z or ? key,
respectively. After a choice was made, the selected action was highlighted
for the remainder of the response window followed by the background
color changing according to the second-stage state the participant had
transitioned to. After the transition, the background color changed to re-
flect the second-stage state and the selected first-stage action moved to the
top of the screen. Two fractal images, corresponding to the actions available

in the second stage, were displayed, and participants again had 1.5 s to
make a response. The selected action was highlighted for the remainder of
the response window. Then, either a picture of a quarter was shown (in-
dicating that they had been rewarded that trial) or the number zero (in-
dicating that they had not been rewarded that trial) was shown. The reward
probabilities associated with second-stage actions were governed by in-
dependently drifting Gaussian random walks (SD = 0.025) with reflecting
boundaries at 0.25 and 0.75. The mapping of actions to stimuli and transi-
tion probabilities was randomized across participants.

Data Analysis. Cortisol deltas were log(+1) transformed to remove positive
skew and were, along with OSPAN scores, entered into the RL model and
regressions as z-scores. Details of the model fitting procedure and the re-
gression specification are provided in SI Text. We fit subjects’ choices using
a full RL model that allows for choices to be influenced by the entire pre-
ceding history of rewards. The model follows closely the hybrid model de-
scribed in ref. 16. For each parameter estimate, we computed a 95% CI; if
0 falls outside this interval, we can reject the null hypothesis that the true
value is zero or more extreme with 95% confidence.
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