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Research Article

Accounts of decision making across cognitive science, 
neuroscience, and behavioral economics posit that deci-
sions arise from two qualitatively distinct systems that 
differ broadly in their reliance on controlled versus auto-
matic processing (Daw, Niv, & Dayan, 2005; Dickinson, 
1985; Kahneman & Frederick, 2002; Loewenstein & 
O’Donoghue, 2004). This distinction is thought to be of 
considerable practical importance, for instance, as a pos-
sible substrate for compulsion in drug abuse (Everitt  
& Robbins, 2005) and other disorders of self-control 
(Loewenstein & O’Donoghue, 2004).

However, one challenge for investigating such a divi-
sion of labor experimentally is that, in typical formula-
tions, it is often unclear which system produced a given 
behavior, and the contributions of each system can often 
be conclusively distinguished only by procedures that are 
both laborious and theory dependent (Dickinson & 
Balleine, 2004; Gläscher, Daw, Dayan, & O’Doherty, 2010). 

Moreover, although different theories share a common 
rhetorical theme, there is less consensus as to the funda-
mental, defining characteristics of the two systems, which 
makes it a challenge to relate data grounded in different 
models’ predictions. One particularly large gap in this 
regard is between research in human and animal cogni-
tive psychology. Human research is typically grounded in 
a distinction between procedural versus explicit learning 
and elucidated by manipulating factors such as working 
memory (WM) load (Foerde, Knowlton, & Poldrack, 2006; 
Zeithamova & Maddox, 2006). More invasive animal 
research has traditionally been conducted on parallel 
brain structures for instrumental learning (Dickinson & 
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Balleine, 2004; Yin & Knowlton, 2006) and has usually 
involved two-stage learning-and-transfer paradigms, such 
as latent learning or reward devaluation. This latter 
domain has been of recent interest to human cognitive 
neuroscientists because of the close relationship between 
traditional associative-learning models and the reinforce-
ment-learning algorithms that have been used to charac-
terize activity in dopaminergic systems in both humans 
and animals (temporal-difference learning; O’Doherty, 
Dayan, Friston, Critchley, & Dolan, 2003; Schultz, Dayan, 
& Montague, 1997).

For these reasons, reinforcement-learning theories 
may provide new leverage for reframing and formalizing 
the dual-system distinction in a manner that spans both 
animal and human traditions. One contemporary theo-
retical framework leverages the distinction between two 
families of reinforcement-learning algorithms: model-
based and model-free reinforcement learning (Daw et al., 
2005). Temporal-difference-based theories posit that the 
dopamine system is model free in the sense that it directly 
learns preferences for actions using a principle of repeat-
ing reinforced actions (akin to Thorndike’s law of effect) 
without ever explicitly learning or reasoning about the 
structure of the environment. In model-based reinforce-
ment learning, by contrast, the system learns an internal 
“model” of the proximal consequences of actions in the 
environment (such as the map of a maze) in order to 
prospectively evaluate candidate choices. This algorith-
mic distinction closely echoes theories of instrumental 
conditioning in animals (Dickinson, 1985), but the com-
putational detail of Daw et al.’s (2005) framework leads 
to relatively specific predictions that afford clear identifi-
cation of each system’s contribution to choice behavior.

Consistent with prior work suggesting the parallel 
operation of distinct valuation systems (Dickinson & 
Balleine, 2004), previous research found that people 
appear to exhibit a mixture of both strategies in their 
choice patterns (Daw, Gershman, Seymour, Dayan, & 
Dolan, 2011). However, it remains to be seen whether 
these two forms of choice behavior reflect any of the 
characteristics associated with controlled and automatic 
processing in human cognitive neuroscience and, even 
more fundamentally, whether they really capture distinct 
and separable processes. Underlining the question, 
recent functional MRI (fMRI) work unexpectedly revealed 
overlapping neural signatures of the two strategies (Daw 
et al., 2011).

To investigate these questions, we paired the multistep 
choice paradigm of Daw and colleagues (2011; Fig. 1) 
with a demanding concurrent task manipulation designed 
to tax WM resources. It has been demonstrated that con-
current WM load drives people away from explicit or 
rule-based systems toward reliance on putatively implicit 

systems in perceptual categorization (Zeithamova & 
Maddox, 2006), probabilistic classification (Foerde et al., 
2006), and simple prediction (Otto, Taylor, & Markman, 
2011). Contemporary theories differentiating model-
based versus model-free reinforcement learning hypoth-
esize that increased demands on central executive 
resources influence the trade-off between the two sys-
tems because model-based strategies involve planning 
processes that putatively draw on executive resources 
(Norman & Shallice, 1986), whereas model-free strategies 
simply apply the parsimonious principle of repeating 
previously rewarded actions (Daw et al., 2005; Dayan, 
2009).

In Experiment 1, we utilized a within-subjects design in 
which some trials of the choice task were accompanied 
by a numerical Stroop task that has been demonstrated to 
displace explicit processing resources in perceptual cate-
gory learning (Waldron & Ashby, 2001). We hypothesized 
that if learning, planning, or both in a model-based sys-
tem is constrained by the availability of central executive 
resources, then choice behavior on these trials should, 
selectively, reflect reduced model-based contributions 
and increased model-free contributions. As a corollary, we 
predicted that response times (RTs)—a widely used index 
of cognitive cost (Payne, Bettman, & Johnson, 1993)—
would be slower on trials in which model-based influence 
was prevalent in participants’ choices than on trials in 
which choice appeared relatively model free. To further 
highlight model-based choice’s dependence on central 
executive resources, we conceptually replicated this phe-
nomenon in Experiment 2.

Experiment 1 

Method

Our experimental procedure is described in detail in this 
section. Readers seeking an intuitive understanding of 
the task and our predictions are encouraged to advance 
to the Results section.

Participants. A total of 43 undergraduates at the Uni-
versity of Texas participated in Experiment 1 in exchange 
for course credit and were paid 2.5¢ per rewarded trial to 
incentivize choice. The data of 25 participants were used 
in analyses (participant inclusion criteria are detailed in 
the Supplemental Material available online).

Materials and procedure. Participants performed  
300 trials of the two-stage reinforcement-learning task 
(Fig. 1a); on 150 of these trials (WM-load trials), the task 
was accompanied by a numerical Stroop task. These 
WM-load trials were positioned randomly, but with the 
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Fig. 1.  Paradigm and model predictions for the two-stage choice task. In the multistep choice paradigm (a), participants are presented 
with two options in the first stage and asked to choose one. Each option has a 70% probability of leading to one of two second stages and 
a 30% probability of leading to the other. In the second stage, participants again have to choose between two options, each of which is 
associated with different probabilities of reward. The graphs (b and c) depict the predicted probability of repeating a first-stage action in 
the second stage (“stay probability”) as a function of whether that choice was rewarded or unrewarded and whether the transition from the 
first-stage state to the second-stage state in the previous trial was common (70% probability) or rare (30% probability). Under a model-free 
choice strategy (b), a first-stage choice resulting in reward is more likely to be repeated on the subsequent trial regardless of whether that 
reward occurred after a common or a rare transition. Under a model-based choice strategy (c), rewards after rare transitions should affect  
the value of the unchosen first-stage option, thus leading to a predicted interaction between the factors of reward and transition probabil-
ity. Panels (b) and (c) are adapted from “Model-Based Influences on Humans’ Choices and Striatal Prediction Errors,” by Daw, Gershman,  
Seymour, Dayan, and Dolan, 2011, Neuron, 69, p. 1206. Copyright 2011 by Elsevier.
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constraint that the ordering would yield equal numbers 
of three trial types of interest (50 each for Lag 0, Lag 1, 
and Lag 2 trials, with lag defined by the number of trials 
since the most recent WM-load trial; see the Results sec-
tion for more details). Participants were instructed to per-
form the WM task as well as possible and to make choices 
with whatever cognitive resources they had remaining 
(i.e., “with what was left over”). After being familiarized 
with the reinforcement-learning task’s structure and 
goals, they were given 15 practice WM-load trials to 
familiarize them with the response procedure.

The reinforcement-learning task followed the same 
general procedure in both no-WM-load and WM-load tri-
als (see Fig. 2 for a timeline). In the first step of no-WM-
load trials, two fractal images appeared side by side on a 
black background, and participants had 2 s to choose 
between the left- or right-hand image using the “Z” or “?” 
key, respectively. After a choice was made, the selected 
image was highlighted for the remainder of the response 
period, and the background color changed according to 
which second-stage state the participant had been transi-
tioned to. The second-stage state could be either com-
mon (70% probability) or rare (30% probability). After the 
transition, the image selected in the first stage was mini-
mized and moved to the top of the screen. Two different 
fractal images were then displayed, and participants 
again had 2 s to choose one. The selected action was 
highlighted for the remainder of the response period. 
Then, either a picture of a quarter (indicating that they 
had been rewarded on that trial) or the number zero 
(indicating that they had not been rewarded on that trial) 
was shown. The reward probabilities associated with sec-
ond-stage actions were governed by independently drift-
ing Gaussian random walks (SD = 0.025) with reflecting 
boundaries at 0.25 and 0.75. Mappings of actions to stim-
uli and transition probabilities were randomized across 
participants.

WM-load trials followed the same procedure, except 
that participants additionally had to perform a numerical 
Stroop task, which required them to remember which of 
two numbers was physically and numerically larger 
(Waldron & Ashby, 2001; Fig. 2). These trials were sig-
naled in two ways. First, during the 1-s intertrial interval 
preceding the first stage, participants were warned with 
the message “WATCH FOR NUMBERS.” Second, during 
both stages of the choice task, the screen was outlined in 
red. At the beginning of the first stage, two digits were 
presented for 200 ms above and to the left and right, 
respectively, of the choice stimuli; they were then cov-
ered by a white mask for another 200 ms. After second-
stage reward feedback was provided, either the word 
“VALUE” or “SIZE” appeared alone on a black screen, and 
there was a 1-s response period in which participants 
used the “Z” or “?” key to indicate whether the number 

with the larger value or larger size appeared on the left 
or the right side of the screen, respectively, during the 
first stage. Their response was followed by 1 s of feed-
back (“CORRECT” or “INCORRECT”) and then an inter-
trial interval. If participants failed to choose one of the 
images in either response stage or in the numerical 
Stroop task, a red “X” appeared for 1 s to indicate that 
their response was too slow, and the trial was aborted. 
Crucially, the trial lengths were equated across WM-load 
and no-WM-load trials.

Results

Participants performed 300 trials of a two-stage reinforce-
ment-learning task (Fig. 1a). In each two-stage trial, peo-
ple made an initial first-stage choice between two options 
(depicted as fractals), which probabilistically led to one 
of two second-stage “states” (colored green or blue). In 
each of these states, participants made another choice 
between two options, which were associated with differ-
ent probabilities of monetary reward. Each of the first-
stage responses usually led to a particular second-stage 
state (70% of the time) but sometimes led to the other 
second-stage state (30% of the time). Because the sec-
ond-stage reward probabilities independently changed 
over time, decision makers needed to make trial-by-trial 
adjustments to their choice behavior in order to effec-
tively maximize payoffs.
 Model-based and model-free strategies make qualita-
tively different predictions about how second-stage 
rewards influence first-stage choices on subsequent trials. 
For example, consider a first-stage choice that results in a 
rare transition to a second stage wherein the second-
stage choice was rewarded. Under a pure model-free 
strategy—by virtue of the reinforcement principle—one 
would repeat the same first-stage response in the follow-
ing trial because it ultimately resulted in reward. In con-
trast, a model-based choice strategy, utilizing a model of 
the transition structure and immediate rewards to pro-
spectively evaluate the first-stage actions, would predict a 
decreased tendency to repeat the same first-stage option 
because the other first-stage action would actually be 
more likely to lead to that second-stage state.

These patterns of dependency of choices on the previ-
ous trial’s events can be distinguished by a two-factor 
analysis of the effect of the previous trial’s reward 
(rewarded vs. unrewarded) and transition type (common 
vs. rare) on the first-stage choice in the current trial.1  
The predicted choice pattern for a pure model-free strat-
egy and a pure model-based strategy are depicted in 
Figures 1b and 1c, respectively, derived from model sim-
ulations (Daw et al., 2011; see the Reinforcement-Learning 
Model section in the Supplemental Material). A pure 
model-free strategy predicts only a main effect of reward, 
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whereas a model-based strategy predicts a full crossover 
interaction between reward and transition type because 
transition probabilities are taken into account. Following 
Daw et al. (2011), we factorially examined the impact 
that both the transition type and reward on the previous 
trial had on participants’ tendency to repeat the same 
first-stage choice on the current trial. To examine the 
relationship between these signatures of choice strategies 
and the concurrent WM-load manipulation, we crossed 
these factors with a third factor defining the position of 

the most recent WM-load trial relative to the current trial. 
We sorted trials according to when the most recent 
WM-load trial had occurred relative to the current trial, 
which yielded three trial types of interest: Lag 0, Lag 1, 
and Lag 2, which refer to trials in which WM load 
occurred on the current trial, the previous trial, or the 
trial preceding the previous trial, respectively. Trials in 
which WM load occurred more than once across the cur-
rent trial and its two predecessors did not fall into any of 
these categories and were excluded from analysis.
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Fig. 2.  Timeline of events in WM-load trials (left) and no-WM-load trials (right) in Experiment 1. The first stage of no-WM-load trials 
began with a blank screen, and then two fractal images appeared side by side on a black background. Participants had 2 s to choose 
between the two images, after which their selection was highlighted for the remainder of the response period. The first stage then tran-
sitioned to the second-stage state, which was signaled by a change in background color. The image selected in the first stage shrank and 
moved to the top of the screen, and two new images appeared. Participants again had 2 s to choose an image, and their response was 
highlighted for the remainder of the response period. Then, either a picture of a quarter (shown in the timeline on the left) or the number 
zero (shown in the timeline on the right) appeared to indicate that they had either been rewarded or not been rewarded, respectively, 
on that trial. This was followed by a blank screen and a fixation cross. WM-load trials followed the same general procedure as no-WM-
load trials, with the following differences. They began with a cue that these trials would include a numerical Stroop task. Two different 
numbers of different physical sizes then appeared above the choice stimuli in the first stage for 200 ms and were subsequently covered 
by white masks. After second-stage reward feedback was provided, either the word “VALUE” (shown here) or “SIZE” appeared alone on 
a black screen, and participants had to indicate whether the number with the larger value or the larger size, respectively, had appeared 
on the left or the right during the first stage by pressing one of two keys. Feedback was given for 1 s. WM-load trials were highlighted 
in red throughout. Critically, event timing was equated between the two trial types.
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Strategy as a function of concurrent WM load.  We 
hypothesized that if WM load interferes with model-
based decision making, behavior on Lag 0 trials should 
be consistent with model-free decision making (Fig. 1b) 
because participants do not have the cognitive resources 
to carry out a model-based strategy on those trials. Con-
versely, we hypothesized that behavior on Lag 2 trials 
would reflect a mixture of both model-based and model-
free strategies—mirroring the results of Daw and col-
leagues’ (2011) study—because these trials involved no 
WM load either on the current trial or on the preceding 
trial, and thus participants could bring their full cognitive 
resources to bear on these trials. We reasoned further that 
if WM load disrupts participants’ ability to integrate infor-
mation crucial for model-based choice, then behavior on 
Lag 1 trials should appear model free (mirroring behavior 
on Lag 0 trials). In contrast, if participants are able to 
integrate this information while under load and apply it 

on the subsequent trial, then behavior on Lag 1 trials 
should resemble a mixture of both strategies, mirroring 
behavior on Lag 2 trials.

As Figure 3a shows, the pattern of results on Lag 2  
trials suggests that participants’ choices on these trials 
reflect both the main effect of reward (characteristic of 
model-free reinforcement learning) and its interaction 
with the rare or common transition (characteristic of 
model-based reinforcement learning); this pattern is con-
sistent with the single-task results obtained by Daw et al. 
(2011). In contrast, choices on Lag 0 and Lag 1 trials 
(Figs. 3b and 3c) appear sensitive only to reward on the 
previous trial and not to the transition type. Qualitatively, 
these choice patterns resemble a pure model-free strat-
egy, which suggests that WM load interferes with model-
based choice.

To quantify these effects of WM load on choice behav-
ior, we conducted a mixed-effects logistic regression 

a b

c

Fig. 3.  Results from Experiment 1: average proportion of trials on which participants chose to stay with the response they selected in the first 
stage of the previous trial as a function of whether they received a reward on the previous trial and whether the second-stage state transi-
tioned to on the previous trial was common or rare. Results are shown separately for (a) Lag 2 trials, (b) Lag 1 trials, and (c) Lag 0 trials. Lag 0,  
Lag 1, and Lag 2 trials were those in which working memory (WM) load was taxed on the present trial, the previous trial, and the trial preced-
ing the previous trial, respectively. Error bars depict standard errors of the mean.
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(Pinheiro & Bates, 2000) to explain the first-stage choice 
on each trial t (coded as stay vs. switch) using binary 
predictors indicating whether reward was received on  
t – 1 and the transition type (common or rare) that had 
produced it. Further, we estimated these factors under 
each trial type—Lag 0, Lag 1, and Lag 2, represented by 
binary indicators—and, to capture any individual differ-
ences, specified all coefficients as random effects over 
participants. The full regression specification and coeffi-
cient estimates are reported in Table 1.

We found a significant main effect of reward for each 
trial type (ps < .05), which indicates that participants had 
a general tendency to repeat rewarded first-stage 
responses, consistent with intact use of a model-free 
strategy. This finding also suggests that concurrent task 
demands did not produce trivially random or otherwise 
unstructured behavior. However, we found a significant 
three-way interaction between Lag 2, reward, and transi-
tion type (p < .05), which suggests that the interaction 
characteristic of a model-based choice strategy was evi-
dent in Lag 2 trials, as hypothesized. Neither the interac-
tions among Lag 0, reward, and transition type nor among 
Lag 1, reward, and transition type were significant, which 
indicates that this model-based interaction was not pres-
ent in these trial types (ps > .25).

To examine whether these differences between trial 
types were themselves significant, we conducted a 
planned contrast on the Lag 2 three-way interaction (Lag 
2 × Reward × Transition Type, indicative of model-based 

learning). This interaction was significantly larger than 
the same interactions at both the Lag 1 and Lag 0 levels 
(p < .05). Further, we found no differences in model-free 
behavior between any of the trial types (e.g., Lag 0 × 
Reward, Lag 1 × Reward, and Lag 2 × Reward) that we 
considered (ps > .30). All of these results are consistent 
with the hypothesis that concurrent demands selectively 
interfere with model-based learning and planning while 
sparing model-free decision making. (For analyses of 
second-stage choice behavior and secondary task perfor-
mance, refer to the Supplemental Materials.)

Choice RTs.  We also predicted that model-based choice, 
by virtue of its hypothesized cognitive costs, would incur 
larger RTs at the first-stage choice than model-free 
choices would (Keramati, Dezfouli, & Piray, 2011). We 
compared Lag 2 trials (in which behavior reflected the 
influence of a model-based strategy) with Lag 1 trials (in 
which behavior appeared to reflect only a model-free 
strategy). The comparison between the two single-task 
trial types that exhibited different degrees of model usage 
provided a clean test of the hypothesis: In Lag 0 trials, the 
RTs were confounded by the demands of the concurrent 
task itself. A mixed-effects linear model (see the Choice 
and RT Analyses section in the Supplemental Material) 
carried out on first-stage RTs revealed that participants 
exhibited significantly larger RTs on Lag 2 choices than 
on Lag 1 choices (Fig. 4; β = 2.05, p < .05), which sug-
gests that model-based choice—evident on Lag 2 trials—
indeed bore the signature of a cognitively costly process. 
Put another way, choice was faster on Lag 1 trials—where 
behavior appeared model free—which supports the 
notion that the process governing choice on those trials 
was cognitively less expensive.

Table 1.  Results of the Logistic Regression Investigating the 
Influence of Working-Memory-Load Lag, Previous Outcome, 
and Previous Transition Type on First-Stage Response Repeti-
tion in Experiment 1

Predictor Estimate    p

Intercept 1.00 (0.18) < .0001
Lag 0 −0.23 (0.14) .118
Lag 1 −0.43 (0.12) < .0001
Lag 0 × Reward 0.34 (0.13) .010
Lag 1 × Reward 0.19 (0.09) .031
Lag 2 × Reward 0.23 (0.12) .044
Lag 0 × Transition Type 0.07 (0.09) .434
Lag 1 × Transition Type −0.07 (0.08) .390
Lag 2 × Transition Type 0.02 (0.09) .776
Lag 0 × Reward × Transition Type 0.06 (0.09) .478
Lag 1 × Reward × Transition Type −0.07 (0.08) .383
Lag 2 × Reward × Transition Type −0.23 (0.09) .011

Note: Standard errors are given in parentheses. Lag 0, Lag 1, and Lag 
2 refer to trials in which working memory load occurred on the cur-
rent trial, the previous trial, or the trial preceding the previous trial, 
respectively. Previous outcome refers to whether the participant was 
rewarded on the previous trial. Transition type refers to whether the 
transition from the first stage to the second stage in the previous trial 
was common or rare.
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Fig. 4.  Results from Experiment 1: difference in median response 
times (RTs) between Lag 2 and Lag 1 trials for individual participants.
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Reinforcement-learning model.  One limitation of the 
foregoing regression analysis is that it only accounted for 
the influence of reinforcement occurring on the immedi-
ately preceding trial. Most reinforcement-learning models, 
in contrast, posit a decaying influence of all previous  
trials. We extended our regression analysis by fitting  
a dual-system reinforcement-learning model—a computa-
tional instantiation of the principles governing two 
hypothesized choice systems (Daw et al., 2011; Gläscher 
et al., 2010)—to behavior in this task. This model consists 
of a model-free system that updates estimates of choice 
values using temporal-difference learning and of a 

model-based system that learns a transition-and-reward 
model of the task and uses these to compute choice val-
ues on the fly (see Reinforcement-Learning Model in the 
Supplemental Material). The values are linearly mixed 
according to a weight parameter that determines the bal-
ance between model-free and model-based control—
weights closer to 0 indicate model-free control, whereas 
weights closer to 1 indicate model-based control. The 
mixed value is then used to generate choices according to 
a softmax rule (Sutton & Barto, 1998). To accommodate 
the present paradigm, we fit two separate mixing weights: 
one for Lag 0 and Lag 1 trials (combined) and one for Lag 
2 trials only. We found that Lag 2 weights were signifi-
cantly larger than the Lag 0 and Lag 1 weights (Fig. 5), 
t(24) = 2.94, p < .01; this suggests that participants’ behav-
ior was more model-based at longer lags and corrobo-
rates the results of the regression analysis.

Experiment 2

Because the within-subjects WM-load manipulation we 
utilized in Experiment 1 was rather intricate and novel, 
we sought to provide a between-subjects replication of 
the study using a separate WM-load manipulation in 
which one group of participants counted auditory tones 
while performing the same choice task as in Experiment 
1 (Foerde et al., 2006). In brief, we found that the behav-
ior exhibited by single-task participants in the current 
experiment resembled the mixture of strategies observed 
in Lag 2 trials in the previous experiment, whereas the 
behavior of dual-task participants in the current experi-
ment resembled the model-free pattern of choice 
observed in Lag 0 and Lag 1 conditions in the previous 
experiment (Fig. 6; Table 2; see the Supplemental Mate-
rial for details of Experiment 2).
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Fig. 5.  Results from Experiment 1: best-fitting mixing weights across 
Lag 2 versus Lag 0 and Lag 1 trials (combined) resulting from fitting 
the reinforcement-learning algorithm to subjects’ choices. Weights 
closer to 0 indicate more model-free control, whereas weights closer 
to 1 indicate more model-based control. Error bars indicate standard 
errors.

St
ay

 P
ro

ba
bi

lit
y

a b

St
ay

 P
ro

ba
bi

lit
y

Fig. 6.  Results from (a) the single-task condition and (b) the dual-task condition of Experiment 2: average proportion of trials on 
which participants chose to stay with the response they selected in the first stage of the previous trial as a function of whether they 
received a reward on the previous trial and whether the second-stage state transitioned to on the previous trial was common or rare.
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General Discussion

A number of dual-system accounts of choice behavior 
posit a distinction between two systems distinguished by, 
among other things, the extent to which central executive 
or prefrontal resources are employed (Dickinson & 
Balleine, 2004; McClure, Laibson, Loewenstein, & Cohen, 
2004). Still, the contributions of the two putative systems 
have proven laborious to isolate behaviorally (Valentin, 
Dickinson, & O’Doherty, 2007) or with neuroimaging 
(Daw et al., 2011). Informed by a contemporary theoreti-
cal framework that makes quantitative predictions about 
the behavioral signatures of the two systems and the  
arbitration of behavioral control among the two (Daw  
et al., 2005), we demonstrated how human decision mak-
ers trade off the concurrent cognitive demands of the  
environment with their usage of computationally expen-
sive choice strategies. In particular, when burdened with 
concurrent WM load, decision makers relied on a pure 
reinforcement-based strategy—akin to model-free rein-
forcement learning—and eschewed the transition struc-
ture of the environment. When unencumbered by these 
demands, participants’ choices reflected a mixture of 
model-based and model-free strategies, mirroring previ-
ous results (Daw et al., 2011).

The present results are evocative of past research 
revealing that concurrent cognitive demands shift the 
onus of learning from explicit, declarative systems to pro-
cedural-learning systems (Foerde et al., 2006). It is impor-
tant to note that although previous work has revealed that 
concurrent demands can shift people’s response strate-
gies, these studies have relied on comparing results across 
multiple task methodologies chosen to favor either strat-
egy (Waldron & Ashby, 2001; Zeithamova & Maddox, 

2006) or post hoc assessments of declarative knowledge 
(Foerde et al., 2006). The two-step reinforcement-learning 
task used in the experiments reported here, in contrast, 
afforded unambiguous identification of the simultaneous 
contributions of model-based and model-free choice 
strategies within the same task and permitted dynamic 
assessment of trial-by-trial arbitration of control between 
the two systems. Here, accordingly, we present evidence 
of a difference in strategy use between trial types that 
occurred fully interleaved, consistent with rapid strategic 
switching within participants and task.

These results complement previous fMRI investiga-
tions using the present task—a previous finding of con-
vergent neural correlates for the two strategies (Daw  
et al., 2011) left open the question of whether they were 
actually psychologically or functionally distinct. Here, 
our behavioral results provide a compelling demonstra-
tion that model-based and model-free valuation are dis-
sociable, and these findings further underscore the utility 
of within-subjects manipulations for dissociating the 
behavioral contributions of putatively separate neural 
systems. Finally, the distinction as we operationalize it is 
arguably of more biological relevance than previous 
attempts, because the model-free strategy on which par-
ticipants appeared to fall back under WM load was 
exactly that predicted by prominent neurocomputational 
accounts of the dopamine system (Montague, Dayan, & 
Sejnowski, 1996).

It is also worth noting that model-based choice relies 
on at least two constituent processes: (a) learning of  
second-stage reward probabilities and environment- 
transition probabilities from feedback and (b) planning 
by using these reward probabilities and environment-
transition probabilities prospectively to inform first-stage 
choice on subsequent trials (Sutton, 1990). Insofar as the 
learning relevant to the choice on Trial t occurs on earlier 
trials (and, specifically, for the effects quantified here on 
the preceding trial, t – 1), but the planning occurs on the 
trial itself, we might expect WM load occurring at Lag 1 
(i.e., on trial t – 1) to primarily affect learning and WM 
load at Lag 0 (Trial t) to primarily affect planning. By this 
logic, our finding of a similar strategic deficit at both lags 
may suggest that WM load disrupted both putative sub-
processes. That said, it is possible that these processes 
are not as temporally isolated as we ascribe (e.g., action 
planning on Trial t may begin as soon as the feedback is 
received on the preceding trial) or that results also reflect 
other executive demands not isolated to a single trial 
(e.g., switching between dual and single tasks from t – 1 
to t), making this interpretation tentative. Future work 
should aim to disambiguate more precisely whether con-
current executive demands incapacitate planning, learn-
ing, or some combination thereof, perhaps by using more 
specifically directed distractor tasks.

Table 2.  Results of the Logistic Regression Investigating the 
Influence of Working-Memory-Load Condition, Previous Out-
come, and Previous Transition Type on First-Stage Response 
Repetition in Experiment 2

Predictor  Estimate  p

Intercept 1.15 (0.13) < .0001
Load −0.25 (0.13) .058
Reward 0.42 (0.07) .000
Transition 0.01 (0.03) .823
Load × Reward 0.01 (0.07) .824
Load × Transition −0.02 (0.03) .433
Reward × Transition Type −0.11 (0.04) .005
Load × Reward × Transition Type 0.08 (0.04) .047

Note: Standard errors are given in parentheses. Working memory load 
was manipulated by having each participant perform either single-task 
or dual-task trials. Previous outcome refers to whether the participant 
was rewarded on the previous trial. Transition type refers to whether 
the transition from the first stage to the second stage in the previous 
trial was common or rare.
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Although the model-based strategy we observed in the 
Lag 2 trials was, by definition, not predicted by a model-
free reinforcement-learning system of the sort associated 
with the dopamine system, it is clearly possible to pro-
duce model-free switching (win-stay-lose-shift) via a 
deliberative or explicit strategy. Indeed, this is the ques-
tion that the present manipulation was designed to 
address, and the finding that the model-free, but not the 
model-based, behavior is robust to concurrent load is 
consistent with the prediction that it arises from a distinct, 
striatal procedural-learning system that itself is also model 
free. Still, it is possible in principle that load promotes a 
shift to increased reliance on a cheaper—but still declara-
tive in nature—win-stay-lose-shift strategy. However, the 
best-fitting learning rates recovered in our computational 
modeling (see Table S1 in the Supplemental Material) 
were low,2 which supports the idea that these influences 
arose from an incremental-learning process characteristic 
of implicit learning rather than a rule-based win-stay-lose-
shift strategy.

Whereas Daw and colleagues (2011) relied in part on 
individual differences in model-based choice to examine 
the two systems’ neural substrates, we explicitly manipu-
lated reliance on these strategies within subjects and 
within tasks. As it is well documented that there are con-
siderable individual differences in WM capacity and 
executive function (Conway, Kane, & Engle, 2003; Miyake 
et al., 2000), a significant portion of the individual vari-
ability reported by Daw and colleagues may be attribut-
able to individual differences in WM capacity, and 
likewise, these differences could have potentially modu-
lated the effects of WM load reported here. Exactly how 
individual limitations in cognitive capacity, executive 
control, or a combination of the two modulate model-
based choice warrants additional examination. Further, 
characterizing more precisely how humans balance the 
contributions of model-based and model-free choice is of 
considerable practical importance because contemporary 
accounts of a number of serious disorders of compulsion 
ascribe this behavior to abnormal expression of habitual 
or stimulus-driven control systems (Everitt & Robbins, 
2005; Loewenstein & O’Donoghue, 2004).

Acknowledgments

We gratefully acknowledge Jeanette Mumford and Bradley Doll 
for helpful conversations and Grant Loomis for assistance with 
data collection.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with 
respect to their authorship or the publication of this article.

Funding

This research was supported by National Institute of Mental 
Health Grant MH077708 to Arthur B. Markman. A. Ross Otto 

was supported by a Mike Hogg Endowment Fellowship from 
the University of Texas. Samuel J. Gershman was supported by 
a Graduate Research Fellowship from the National Science 
Foundation. Nathaniel D. Daw was supported in part by 
National Institute of Neurological Disorders and Stroke Grant 
R01 NS 078784, a Scholar Award from the McKnight Foundation, 
and an Award in Understanding Human Cognition from the 
McDonnell Foundation. 

Supplemental Material

Additional supporting information may be found at http://pss 
.sagepub.com/content/by/supplemental-data

Notes

1. In general, reinforcement-learning models predict that a 
given trial’s choice depends on learning also from even earlier 
trials (and in the present study, we used fits of these models to 
verify that our results held when these longer-term dependen-
cies were accounted for). However, because the most recent 
trial exerted the largest effect on choice in these models (and 
this effect becomes exclusive as free-learning-rate parameters 
approach 1), this factorial analysis provided a clear picture of 
the critical qualitative features of behavior less dependent on 
the specific parametric and structural assumptions of the full 
models.
2. Further, we fitted a separate model that allowed for different 
learning rates across the three trial types of interest (Lag 0, Lag 
1, and Lag 2) and found that learning rates did not vary signifi-
cantly as a function of WM-load lag, F = 0.83, p = .44.
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