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In keeping with the view that individuals invest cognitive effort in accordance with its relative costs and
benefits, reward incentives typically improve performance in tasks that require cognitive effort. At the
same time, increasing effort investment may confer larger or smaller performance benefits—that is,
the marginal value of effort—depending on the situation or context. On this view, we hypothesized that
the magnitude of reward-induced effort modulations should depend critically on the marginal value of
effort for the given context, and furthermore, the marginal value of effort of a context should be learned
over time as a function of direct experience in the context. Using two well-characterized cognitive con-
trol tasks and simple computational models, we demonstrated that individuals appear to learn the mar-
ginal value of effort for different contexts. In a task-switching paradigm (Experiment 1), we found that
participants initially exhibited reward-induced switch cost reductions across contexts—here, task switch
rates—but over time learned to only increase effort in contexts with a comparatively larger marginal
utility of effort. Similarly, in a flanker task (Experiment 2), we observed a similar learning effect across
contexts defined by the proportion of incongruent trials. Together, these results enrich theories of cost-
benefit effort decision-making by highlighting the importance of the (learned) marginal utility of cogni-

tive effort.
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The resource-limited nature of cognitive processing prescribes
that people should exert cognitive effort only when it is worth-
while—that is, when the costs incurred by expending additional
effort are justified by the benefits it may confer (Hull, 1943; Kool
& Botvinick, 2018; Shenhav et al., 2017). For example, reward
incentives mobilize cognitive processing resources across diverse
cognitive control tasks (Bijleveld et al., 2010; Fromer et al., 2021;
Hiibner & Schlosser, 2010; Otto & Vassena, 2021; Padmala &
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Pessoa, 2011), which is thought to arise from a cost-benefit trade-
off calculation (Shenhav et al., 2017): Increasing the benefits tied
to effort exertion offsets the cognitive costs of exerting effort. Peo-
ple also tend to avoid exertion of cognitive effort when given the
choice, in line with the idea that mentally demanding behavior is
experienced as costly (Kool et al., 2010; Vogel et al., 2020; West-
brook et al., 2013) and further buttressing the notion that effort
allocation arises from a cost-benefit calculus.

Less is known, however, about how individuals integrate cost
and benefit information in making effort allocation decisions over
time. Providing explicit information regarding task demands (i.e.,
effort costs) and available reward incentives (i.e., benefits) both
modulate effort expenditure and alter individuals’ “decisions” to
engage in effortful processing (Braem, 2017; Krebs et al., 2012;
Vassena et al., 2019). One important but open question concerns
whether the marginal benefits of rewarded effort interact with the
demand level of the environment. In other words, does an individ-
ual’s inclination to adjust effort expenditure over time further
depend on the context-specific benefits of this effort allocation?
Intuitively, efficient allocation of effort should consider the net
utility (benefits minus costs) of effort expenditure: In contexts
where increasing control allocation is costly, reward incentives
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should exert less influence on effort outlay than contexts where
increasing control allocation is inexpensive.

Building on this framework, we propose that reward-guided
effort allocation should depend on the marginal utility of increas-
ing effort in a particular context—that is, the additional task per-
formance benefits gained from increasing effort allocation—and
that the computation of this marginal utility should drive learning
of efficient effort allocation, over time. While marginal utility is a
foundational idea for understanding how, for example, a decision
maker takes into account their current wealth level in making
reward-related choices (Li & Hsee, 2021), marginal utility may be
a critical concept for understanding motivated cognitive control as
it suggests boundary conditions on when reward incentives should
be expected to mobilize effortful cognitive processing.

Learning an efficient effort allocation should require exposure to
its marginal utility on the basis of direct experience. This idea is in
line with reinforcement learning accounts of control allocation, which
posit that people learn the expected value of control allocation based
on features of the task environment (Abrahamse et al., 2016; Busta-
mante et al., 2021; Chiu & Egner, 2019; Krebs et al., 2010; Silvetti
et al., 2018; Verguts et al., 2015). Extending this line of inquiry, here
we consider whether individuals learn to modulate reward-guided
effort, over time, in accordance with the marginal utility of effort
allocation in different contexts. We investigated the hypothesis that
differentially experienced marginal benefits of effort intensification
can drive context-specific learning of effort allocation.

To illustrate the idea of marginal benefit of control allocation,
consider the case of task switching for which flexible responding
in the face of changes in stimulus-response rules imposes consid-
erable executive control demands (Monsell, 2003). These task set
reconfigurations result in the pervasive “switch costs,” which are
reduced by monetary incentives (Kleinsorge & Rinkenauer, 2012;
Otto & Vassena, 2021; Sandra & Otto, 2018). As in other cogni-
tive control tasks, larger incentives are thought to bring about
increases in effort investment, compared to small or no incentives
(Botvinick & Braver, 2015; Shenhav et al., 2017).

At the same time, the frequency with which task switches occur
modulates switch costs—such that more frequent task switches en-
gender smaller switch costs—presumably due to the increased
demand for effortful control processes required relative to when
switches are rare (Bogdanov et al., 2021; Dreisbach & Haider,
2006; Liu & Yeung, 2020; Monsell & Mizon, 2006). Here, we
propose that the marginal benefit of increasing effort allocation
depends on context and, specifically, on the “default” control
level, vis-a-vis the task switch rate. Hence, boosting the benefits of
additional effort exertion—for example by increasing reward
incentives—should lead, over time, to different magnitudes of
reward-induced effort modulations in contexts with different
default control levels. In contexts with already-high control
demand, people should learn that the marginal benefit of addi-
tional effort exertion is negligible and over time, as a conse-
quence, reduce reward-induced effort modulations. Conversely, in
contexts with a lower default level of control demand, the mar-
ginal benefit of increased control allocation in switch trials
remains substantial.

We formalized these predictions with simulations of an estab-
lished computational model of task switching (Yeung & Mon-
sell, 2003). This model allows making ex ante predictions about
the relationship between cognitive control (i.e., effort) allocation

and task switch costs, depending on the task switch rate. We
used this approach to demonstrate, computationally, that enact-
ing switch cost reductions is more effortful under high-demand
(i.e., high task switch rate) versus low-demand (i.e., low switch
rate) conditions. In doing so, we are able to quantify, from first
principles, the expected marginal benefit (in terms of task switch
cost reductions) of increasing effort allocation under different
environment demand levels. In short, Yeung and Monsell’s sim-
ple response competition model assumes that a top-down “con-
trol input” signal—of which the application is effortful and
modulated by reward incentives (Liu & Yeung, 2020; Otto &
Vassena, 2021)—reduces response interference between tasks.
By simulating two different task switch rates, instantiated as
task-level priming from the previous trial, the model yields pre-
dicted task switch and task repetition response times (RTs) as a
function of control input (Figures 1A and B) and, consequently,
task switch costs (Figure 1C).

In this model (see “Method” below for simulation details), an
important RT pattern emerges, irrespective of control input: A
higher task switch probability engenders smaller task switch costs
(Figures 1A, B, and C), corroborating previous observations
(Dreisbach & Haider, 2006; Liu & Yeung, 2020; Monsell &
Mizon, 2006). Of note, the slope of this curve relating control
input to switch costs (Figure 1C) is steeper in the low-switch-rate
context than the high-switch-rate case, which means that a 25-ms
switch cost reduction, for example, would require a markedly
larger proportional increase in control input under a high-switch-
rate (dark curve) than a low-switch-rate environment (light curve).
To better illustrate this point, the marginal decrease (or derivative;
Figure 1D) in switch costs with respect to increases in control
input is more negative in the low, versus high, switch rate context
at all values of control input considered.

Having demonstrated, computationally, that the marginal benefit
of additional effort exertion—in terms of switch cost reduction—
should be greater in low-demand versus high-demand contexts, we
experimentally probed a key question: Do people learn, over time,
efficient reward-guided control allocation in a task-switching para-
digm (as illustrated in Figure 2)? More specifically, does this
(learned) efficient allocation reflect both (a) varying reward incen-
tives and (b) the differing marginal benefits of increasing effort
investment across demand contexts?

To formalize our ex ante predictions concerning how reward-
induced switch cost modulations might change over time as a func-
tion of the (presumably learned) marginal value of effort, Figure 1E
depicts predicted switch costs for a model that applies control input
directly in proportion to reward incentives—indiscriminately across
demand levels—over and above the default control input deter-
mined by the task switch rate. Thus, we predicted that individuals
would increase effort in accordance with reward incentives, irre-
spective of demand level, which would manifest as smaller switch
costs in higher-reward conditions (Hall-McMaster et al., 2019; Otto
& Vassena, 2021). Over time, we hypothesized that participants
learn that reward-induced effort investment is more beneficial in the
low-demand context, by virtue of the larger marginal decrease in
switch cost per unit of additional control. We can formalize this
idea with a model that modulates control input in accordance with
reward incentives but, critically, scales these control input modula-
tions by the marginal value of effort—that is, the slope of the rela-
tionship between control input changes and switch cost changes
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Figure 1

Simulated Task Switch Costs Resulting From Yeung and Monsell’s (2003) Model of Task Switching
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Note. Panels A and B: The relationships between task repetition and task switch response times (RTs) as a function of control input for low-switch-rate (i.e.,

low-demand) contexts and high-switch-rate (i.e., high-demand) contexts. Panel C: Computed task switch costs (task switch minus task repetition RTs) as a
function of control input. Panel D: Change in switch cost with respect to increases in control input for high- and low-switch-rate contexts. Panel E: Predicted
task switch costs, as a function of reward incentive level, for a model that indiscriminately increases control input with reward level. Panel F: Predicted task
switch costs for a model that increases control with reward levels in accordance with the marginal value of effort in each demand context.

(Figure 1D)—for which the slope of the high-demand context is
roughly one half of that of the low-demand context. Accordingly,
we predicted that we would observe, as an end point of learning
this marginal value, reward-induced modulations of switch costs
only in the low-demand context, as depicted in Figure 1F.

To demonstrate the generalizability of this adaptive learning
mechanism across diverse cognitive control paradigms, we also
examined whether individuals learn this same efficient allocation
of control in the classic Eriksen flanker task (Eriksen & Eriksen,
1974; Yu et al., 2009). Indeed, as it has been observed in variants
of this simple conflict task that reward incentives reduce incongru-
ence effects (Burton et al., 2021; Hiibner & Schlosser, 2010;
Yamaguchi & Nishimura, 2019), we should also expect to find
evidence for learned sensitivity to the marginal value of effort
exertion in reward-induced reductions in control of response
interference.

Finally, across both experiments, we examined, in exploratory
analyses, whether self-reported individual differences in effort

costs, operationalized by the Need for Cognition scale (NFC;
Cacioppo et al., 1984)—a trait measure of an individual’s intrinsic
motivation to exert cognitive effort—could predict participants’
sensitivity to the marginal value of effort investment. In past work,
we have observed that lower-NFC individuals are more inclined to
increase cognitive effort investment in accordance with reward in-
centive, manifesting as larger reward-induced switch cost modula-
tions (Sandra & Otto, 2018). Taking this result as evidence that
perceived effort costs, measured by the NFC, also bear upon cost-
benefit effort allocation decisions, we might expect here that low-
NFC individuals should also be more sensitive to the marginal
benefits of effort investment, compared to high-NFC individuals,
for which effort costs might be negligible.

Experiment 1: Task Switching

In Experiment 1, we used a task-switching paradigm, depicted in
Figure 2, to examine whether participants would learn to selectively
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Figure 2
Task-Switching Paradigm Used in Experiment 1

COLOR task PATTERN task

ITI [1000ms] ITI [1000ms]

task cue and
stimulus [ <1500ms ]

task cue and _—
stimulus [ <1500ms ]

1SI [500ms] 1SI [500ms]

reward [1000ms] reward [1000ms]
you win

10¢

you win
10¢

Note. Depending on the stimulus location (top or bottom), participants either indicated the color (blue or or-
ange; dark versus light gray, respectively, as printed) or the pattern (stripes or solid) of a square. The reward
available for making a correct response was displayed before the stimulus, and the switch rate (i.e., demand
level) was signaled by a green or red border, light and dark gray, respectively, in print, indicating a low- or
high-switch-rate (i.e., demand) context, respectively. ITI = intertrial interval; ISI = interstimulus interval. See

the online article for the color version of this figure.

modulate their effort in accordance with reward incentive levels.
Specifically, we sought to examine whether participants would take
into consideration the differing marginal utility of increasing effort
expenditure across two different demand contexts.

Method
Participants

We recruited 104 U.S. participants on Amazon’s Mechanical
Turk (MTurk; Crump et al., 2013), who were paid a fixed amount
($3 U.S.) plus a bonus contingent on their task performance, rang-
ing from $1 to $2. Participants provided informed consent in ac-
cordance with the McGill University Research Ethics Board.
Following the criteria used in our previous work (Otto & Vassena,
2021), we excluded the data of 13 participants who failed to per-
form either task with an accuracy of at least 75% on task repeti-
tions and seven participants who missed 10% or more response
deadlines on either the preliminary or reward phase of the task,
leaving 83 participants in the final analyses.

Task-Switching Paradigm

In a preliminary phase, participants completed 100 trials of a
task-switching paradigm in the absence of incentives to gain famil-
iarity with the task. On each trial of this paradigm, which followed
previous work (Otto & Daw, 2019; Otto & Vassena, 2021), a col-
ored square appeared onscreen and participants needed to report
either whether the square was blue or orange (the “COLOR” task)
or whether the square’s fill was solid or striped (the “PATTERN”
task). The position of the square on the screen (lower half vs.
upper half; counterbalanced across subjects) indicated which task
the subject was to perform (see Figure 2). Across both tasks,
responses were either associated with a left- or right-hand button
press (e.g., blue = left, orange = right; solid = left, striped = right),

using the “E” or “I”” buttons on the keyboard. Mappings of stimuli
features to keys were counterbalanced across participants. Fifty of
these preliminary trials had a low task switch probability (10%;
meaning that 90% of the trials repeated the previous task, the “low
demand” context), while 50 had a high task switch rate (50%; the
“high demand” context). Participants were given 1,500 ms to
respond, at which point they received feedback onscreen indicat-
ing they made a correct response.

Following this preliminary phase, subjects began the reward
phase, where a number at the beginning of each trial signaled the
reward available for correct responses (either 1 or 10 cents; see
Figure 2). The demand context was indicated by a colored frame
around the available reward. In the low (green) and high (red) dif-
ficulty contexts, the task switch probabilities were 10% and 50%,
respectively. Each difficulty context block was 40 trials long and
consisted of two reward “miniblocks” composed of 20 trials of ei-
ther 1- or 10-cent incentives contingent on making a correct
response within the response deadline. Thus, each difficulty con-
text contained two levels of reward, pseudorandomized within dif-
ficulty contexts. Participants completed six demand context
blocks, the orders of which were pseudorandomized across partici-
pants, totaling 240 trials.

Prior to the main task, participants completed the NFC scale, an
18-item questionnaire that measures participants’ intrinsic motiva-
tion to engage in cognitively demanding activities (for example, “I
prefer complex to simple problems” and “I prefer my life to be
filled with puzzles I must solve”; Cacioppo et al., 1984). Partici-
pants also completed the Behavioral Inhibition System/Behavioral
Activation System scales (BIS/BAS; Carver & White, 1994).

Data Analysis

To ensure that task-switching behavior reflected participants’
experienced demand context—that is, the high or low task switch
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rate—our analyses omitted the first 10 trials of each demand block
and, following previous work, excluded outlier trials with RTs
greater than 3 standard deviations from each subject’s mean RT
(Otto & Daw, 2019; < 1% of trials per participant; note that the
key patterns of significance hold without this exclusion applied)
and excluded trials following errors (Liu & Yeung, 2020; < 10%
of trials per participant). We estimated mixed-effects regressions
using the Ime4 package for the R programming language (Bates &
Maechler, 2009), taking each miniblock’s task switch cost (mean
log-transformed correct task switch RT minus the mean log-trans-
formed correct task repetition RT) as the outcome variable and the
demand level (that is, task switch probability) and available
reward for that miniblock, task block (representing whether the
miniblock occurred in the first or last 120 trials of the experiment)
as predictor variables with all possible interactions between these
predictors. This model specification took all predictor variables as
fixed and random effects (see online supplemental materials for
regression equation). Significance tests for each coefficient esti-
mate were performed using Satterthwaite's method in the ImerTest
package (Kuznetsova et al., 2017). In the model examining indi-
vidual differences in NFC, we z-scored these NFC scores across
participants before entering them as a predictor variable. In per-
forming post hoc pairwise comparisons, we corrected for false dis-
covery rate using the Benjamini and Hochberg (1995) procedure.

Computational Model of Task Switching

We implemented an established model of task switching,
described in detail by Yeung and Monsell (2003), previously used
to model the effects of reward incentives (Otto & Vassena, 2021)
and task strength (Spitzer et al., 2019) on task switch RT costs.
This model assumes that task responses result from competition
between the two tasks (here, the “shape” vs. “pattern” task), each
activated in accordance with the default “strength” of the task as
well as possible priming from task activation on the previous trial.
Note that this model, as originally described, makes predictions
about RTs but not response accuracy per se. In particular, the task
performed on the previous trial receives additional input via pri-
ming—thereby increasing its activation—while the task that was
not performed on the previous trial receives zero additional input
from priming. As a result, on task switches, competition between
the two tasks is heightened—due to task priming—and the conse-
quent activation levels of the two tasks result in slower RTs. Impor-
tantly, providing additional “control input”—which increases the
activation level of the to-be-completed task, instantiating a form of
top-down control—can counteract the task priming responsible for
task-switching costs.

On each trial, the net input for a given task i (that is, shape or
pattern) is determined by a linear combination of four input
sources:

input; = strength; 4+ priming; 4+ control; + noise (1)

where strength; corresponds to the strength of the task, priming;
corresponds to previous activation (or “inertia”) from the previ-
ously executed task (zero if the task was not executed on the previ-
ous trial), control; represents control input (varied parametrically
in our simulations), and noise is simply zero-mean Gaussian noise
(o =.1). The activation of each task set is computed by the follow-
ing negatively accelerated function:

activation; = 1—exp(—1.5 X input;) 2

The response generation time is computed by dividing a thresh-
old by the generation rate, calculated as the normalized activation
of both tasks:

generation rate; = activation; /Zactivation 3)

generation time; = THRESHOLD / generation rate; “4)

The threshold parameter was arbitrarily set to 350. Finally, the
model outputs a simulated RT for the task set that first produces a
response:

RT = 150 + generation time; + resolution time 5)

where the resolution time is computed by sampling an ex-Gaus-
sian distribution (1 = 150, o = 10, T = 40).

In the present simulations, we instantiated the task switch rate
(10% versus 50%) by altering the priming parameter: A low task
switch rate corresponds to a larger value of the priming parameter
(.1) and more task priming should occur with frequent task repeti-
tions, whereas a high task switch rate is instantiated with a smaller
value of the task priming parameter (.05) because task priming
(with respect to the previous trial’s task) is less beneficial in the
face of less frequent task repetitions. Further, we assume that the
strength parameters for the two tasks are equal (.1) on the basis of
similar performance (in both accuracies and RTs) we observe
between the shape and pattern tasks (see “Overall Task Perform-
ance” below).

We simulated 500,000 trials of the model under each of the two
demand levels (that is, task switch rates) for each control input pa-
rameter value, ranging from .20 to .50, and plotted task switch and
task repeat RTs as a function of control input (Figure 1A and B for
low and high demand, respectively). Task switch costs were then
computed as the difference between task switch and task repeat, as
a function of control input for each task switch rate (Figure 1C).
Finally, for each demand level, we computed the marginal
decrease of task switch costs with respect to control input by tak-
ing the backward difference of switch costs (with control input
A = .04) yielding an approximate derivative of switch costs with
respect to control input (Figure 1D).

Incentivized Model Simulations

We simulated the effect of trial-level reward incentives on task
switch costs in Experiment 1 (Figure 1E and F), which we opera-
tionalized as an increase in control input over and above a default
control level associated with the demand context, following our
previous work (Otto & Vassena, 2021):

controleontext,reward = CONIOleontext

+ (reward X marginal_value) X 0.05

We set the default level of control for each demand context, con-
110l conrexss 10 .05 and .25 in the low- and high-demand contexts,
respectively. Our simulations assumed that initially, the model
naively and indiscriminately applies control as a function of
reward level across the two demand contexts, which is instantiated
by setting marginal_value to .5 in both reward contexts, yielding
the patterns of reward-induced switch cost reductions seen in
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Figure 1E. We assume that when the differing marginal values of
effort for the two demand contexts have been learned (Figure 1D),
reward-induced control in the high-demand context is scaled by a
factor of one half, mirroring the ratio of the average slopes of the
value function relating control input to switch costs in the high-
versus low-demand contexts. Accordingly, the end-of-learning
model assumes that the marginal_value takes a value of .5 in the
low-demand context and .25 in the high-demand context, resulting
in the pattern of switch cost reductions depicted in Figure 1F. In
all cases, the resultant control input is scaled by a constant (.05) to
ensure input is provided in units appropriate for the task-switching
model.

Results and Discussion
Overall Task Performance

We observed significant task switch costs, expressed as longer
RTs on task switch versus task repetition RTs, both in low-demand
blocks, which required task switches on 10% of trials (mixed-
effects regression on RTs: § = .205, SE = .018, p < .0001), and in
high-demand blocks, which required task switches on 50% of tri-
als (f =.094, SE =.007, p < .0001; see Table 1). Mirroring previ-
ous work examining task switch costs as a function of task switch
rates (Duthoo et al., 2012; Frober & Dreisbach, 2017; Mayr, 2006;
Monsell & Mizon, 2006), these task switch costs—expressed as
the difference between task switch and repetition RTs—were sig-
nificantly smaller in high-demand (M = 82.34, SD = 79.30) as
compared to low-demand blocks (M = 250.12, SD = 127.79; § =
—.20, SE = .03, p < .0001). Similarly, task switches were signifi-
cantly less accurate than task repetitions in both low-demand
blocks (mixed-effects logistic regression; task switch effect B =
—1.598, SE = .154, p < .0001) and high-demand blocks (B =
—.443, SE = .094, p < .0001; Table 1), and this accuracy effect
was smaller in high-demand blocks compared to low-demand
blocks (interaction § = .546, SE = .0393, p < .0001).

Reward Incentives and Switch Costs

We next examined, over time, how reward incentives modulated
switch costs in two demand levels. Figure 3 depicts task switch
costs as a function of demand level (low vs. high), reward incentive
(1 cent vs. 10 cents), and trial block (first half vs. second half,
depicted in Panels A and B, respectively). While it is apparent that
switch costs were smaller overall with larger incentive—consistent
with previously observed reward-induced switch cost reductions

Table 1

(Frober & Dreisbach, 2016; Kleinsorge & Rinkenauer, 2012; Otto
& Vassena, 2021)—the effect of incentives in each of the two
demand levels changed over time. In the first half of the experi-
ment, reward incentives reduced switch costs both in high- and
low-demand blocks, suggesting that initially, participants were will-
ing to increase control allocation in accordance with reward regard-
less of the cost of increasing control—that is, even if marginal
increases in effort have lower net benefit in high-demand blocks.
However, in the second half of the experiment, reward incentives
reduced switch costs only in low-demand blocks, where marginal
increases in effort expenditure carry greater net benefit, but not in
high-demand blocks, where marginal increases in effort expenditure
carry a smaller benefit.

Statistically, in a mixed-effects model examining switch costs
as a function of reward, demand level, and trial block (see full
coefficient estimates in Table 2), we observed a significant interac-
tion between reward, demand level, and trial block upon switch
costs (B = .1634, SE = .0589, p = .006), indicating that the
observed reward-induced switch cost reductions jointly depended
on demand level and trial block. We also observed a negative but
nonsignificant main effect of reward (f = —.0227, SE = .0326, p =
.441), suggesting that this reward incentive did not uniformly op-
erate over both demand levels and over time. Further supporting
this observation that these switch cost modulations were time de-
pendent, we did not find a significant two-way interaction between
reward incentives and demand level (f = —.0363, SE = .0411, p =
.378).

We further probed the specificity of the three-way interaction
between reward incentive level, demand context, and trial block in
a series of post hoc, pairwise tests. In the first half of the experi-
ment, we observed that reward incentive level exerted a significant
effect of reward incentive level in the high-demand context (¢ =
2.596, p = .0415; all tests corrected for false discovery rate) but
not in the low-demand context (1 = 1.2728, p = .274). In the second
half, we observed a marginally significant effect of reward incen-
tive level in the low-demand context (¢ = 2.050, p = .0870) but no
significant effect in the high-demand context (t = .0525, p =
.9581). Together, these comparisons suggest that participants ini-
tially exhibited reward-induced control modulation in the high-
demand condition, but later, these reward-induced control modula-
tions were only apparent in the low-demand condition.

We also probed whether participants’ diminishing sensitivity to
incentive levels in the high-demand condition resulted in lower
overall levels of reward receipt, rather than merely modulating the
extent of reward-guided effort allocation between reward amounts.

Average Median Response Times (RTs) and Error Rates for Task Repeat and Task Switch Trials Across the Reward Incentive and

Demand Levels in the Task-Switching Paradigm (Experiment 1)

Reward amount Repeat RT (SD) Switch RT (SD) Repeat accuracy (SD) Switch accuracy (SD)
Low-demand blocks

1 cent 658.59 (95.46) 923.39 (158.42) 0.95 (0.09) 0.87 (0.14)

10 cents 668.12 (94.14) 903.01 (151.14) 0.96 (0.05) 0.89 (0.14)
High-demand blocks

1 cent 752.19 (110.2) 832.47 (119.17) 0.9 (0.1) 0.85 (0.13)

10 cents 753.66 (119.08) 838.06 (114.28) 0.92 (0.09) 0.88 (0.11)
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Figure 3

Task Switch Costs in Experiment 1, Expressed as the Difference Between Median
Task Switch RTs and Task Repetition RTs, as a Function of Available Reward
and Demand Context (i.e., Low Versus High Task Switch Rate) and Trial Block

(First Versus Second Half, Depicted in Panels A and B, Respectively)

First Half Second Half
4001 A [ LowDemand || 400} B
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Note. Initially, participants exhibit reward-induced switch cost reductions in both demand
contexts, but after learning, reward-induced switch cost reductions are only apparent in the

low-demand context.

As reward incentives were tied to correct responses, we could
probe this question by analyzing trial accuracy on high-demand
blocks as a function of trial block (early vs. late), finding no signif-
icant effect of trial block upon accuracy on high-demand blocks
(B =.0430, SE = .0558, p = .441). This lack of a trial block effect
suggests against the possibility that the above-mentioned changes
in strategy reflected decreased overall performance (and reward
receipt) in the high-demand condition, but rather indicates that
people learned to exert less (costly) effort without losing reward,
in accordance with our learned marginal benefit of effort hypothe-
sis. Finally, we probed whether fatigue—manifesting as a general
slowing effect as a function of time on task (Lorist et al., 2005)—
might explain the abolition of a reward effect in the high-demand
context over time. However, we observed no apparent effect of
trial number upon high-demand RTs, controlling for task switches
(main effect of trial number: B = —.0142, SE = .0134, p = .295;
interaction between trial number and trial type: B = .0073, SE =
.006, p = .268), suggesting against the possibility of a fatigue
effect selective to the high-demand context. We also found no

Table 2

Mixed-Effects Regression Coelfficients Indicating the Influence of
Demand Level (Task Switch Probability), Reward Incentive
Level, and Experimental Block (Early Versus Late) Upon Task
Switch Costs in Experiment 1

Coefficient Estimate (SE) p value
(Intercept) 0.3311 (0.0248)  <.0001*
Reward —0.0227 (0.0326) 487
Demand level —0.212 (0.0299)  <.0001*
Trial block 0.0517 (0.0327) 115

Reward X Demand Level

Reward X Trial Block

Demand Level X Trial Block

Reward X Demand Level X Trial Block

—0.035 (0.0415) .399
—0.0815 (0.0472) .085

—0.077 (0.0413) .063

0.1634 (0.0589) .006*

Note. SE = standard error.
* Denotes significance at p < .05 level.

evidence for more general fatigue effects (see online supplemental
materials).

Individual Differences in Need for Cognition (NFC) and
Reward Sensitivity (BAS)

We also examined, in exploratory analyses, how the dynam-
ics of reward-induced switch cost modulations differed as a
function of individual participants’ NFC scores (M = 62.03,
SD =17.90). While we intuited that low- and high-NFC partici-
pants might be differentially sensitive to the marginal value of
effort, we did not have strong predictions about the locus of the
possible predictive NFC effect vis-a-vis main effects or interac-
tions. Figure 4 depicts the same analysis as above, separately
considering low-NFC and high-NFC participants (defined by a
median split). Interestingly, we found that these time-dependent
changes in reward-induced switch cost modulations were espe-
cially pronounced in low-NFC individuals. By contrast, high-
NFC participants, particularly on later trials, exhibited switch
cost reductions in accordance with reward levels in both
demand levels. Statistically, this observation was supported by
a significant four-way interaction between NFC (taken continu-
ously), reward, demand level, and trial block (f = —.1266, SE =
.0539, p = .033; see Table 3 for full coefficient estimates), indi-
cating that the observed group-level interaction between
demand level, reward, and trial block was moderated by partici-
pants’ individual NFC levels. Using the same regression
approach, we did not observe that reward responsiveness, as
measured by the BAS subscale, exerted any predictive effect on
reward-induced switch cost reductions overall and as a function
of demand level, trial block, or their interactions (all interac-
tions ps > .381). In summary, and dovetailing with previous
observations that high-NFC individuals tend to exert more
effort overall (Sandra & Otto, 2018; Westbrook et al., 2013),
this pattern of learned effort allocation suggests that high-NFC
individuals may be less inclined to optimize efficiency of effort
allocation.
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Figure 4

Task Switch Costs in Experiment 1 Plotted as a Function of Reward Incentive Amount,
Demand Context, and Trial Block for Participants Low in Need for Cognition (Panels
A and B) and Participants High in Need for Cognition (Panels C and D)
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Of note, the learning effect observed in the entire sample (Figure 3) is most pro-

nounced in participants low in need for cognition.

Experiment 2: The Flanker Task

Experiment 2 examined the generality of this learning effect to
a wholly different cognitive control paradigm: the arrow flanker
task (Eriksen & Eriksen, 1974). On each trial of the task (see Fig-
ure 5), participants indicate the direction of a central target stimu-
lus (< or >) presented between either congruent (>>>>>) or
incongruent (> > < > >) “flankers.” Typically, responses are
slower on incongruent trials as compared to congruent trials,
which we term the flanker incongruence effect. Importantly, past
studies have observed modulations of the flanker incongruence
effect observed in accordance with the proportions of incongruent
stimuli, typically manipulated in a block-wise fashion: The incon-
gruence effect is reduced in contexts with a larger proportion of
incongruent trials (for example, 75% incongruent trials) compared
to contexts with a smaller proportion of incongruent trials (for
example, 25% incongruent trials), which has been attributed to
strategic modulations of control (Gratton et al., 1992; Yu et al.,
2009) or contingency learning (Braem et al., 2019; Schmidt,
2019).

Following the results of the demand level (that is, task switch rate)
manipulation in Experiment 1, we intuited that the marginal benefit

of increased control allocation—manifesting as reductions in incon-
gruence costs under large incentive amounts—would also differ
across demand contexts, as defined by the proportion of incongruent
trials. To illustrate the marginal utility of effort allocation across these
two demand contexts, we modified the task-switching model of
Yeung and Monsell (2003), which in its original formulation predicts
that flanker-like incongruence effects arise from “task sets” of
unequal strength (see “Method” below for details). Our modified
flanker model predicts smaller incongruence costs in contexts with
larger proportions of incongruent trials (Figure 6A). These incongru-
ence costs decrease in both the 50% and 80% incongruence contexts
with increasing control input but, importantly, at different rates.
Echoing the task-switching model simulations, the marginal utility of
increasing control allocation, which can be seen as the rate of
decrease of incongruence costs with respect to control input (Figure
6B), is consistently larger (that is, more negative) in the 50% (low-
demand) context than in the 80% (high-demand) context.

On the basis of the differing marginal utility of effort investment
across demand contexts, we reasoned that in the 50% incongruent trial
context, participants would consistently modulate their control alloca-
tion in accordance with reward incentives. However, in the 80%
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Table 3

Mixed-Effects Regression Coefficients Indicating the Influence of Demand Level (Task Switch
Probability), Reward Incentive Level, Experimental Block (Early Versus Late), and Need for

Cognition Upon Task Switch Costs in Experiment 1

Coefficient Estimate (SE) p value
(Intercept) 0.3314 (0.02438) <.0001°*
Reward —0.0213 (0.0324) 513
Demand level —0.2122 (0.0297) <.0001°*
Trial block 0.0522 (0.0329) 113
NFC —0.0022 (0.0235) 925
Reward X Demand Level —0.0363 (0.0411) 378
Reward X Trial Block —0.0854 (0.0473) .072
Demand Level X Trial Block —0.0778 (0.0414) .061
Reward X NFC —0.0198 (0.0326) 543
Demand Level X NFC —0.0185 (0.0285) 516
Trial Block X NFC 0.0077 (0.031) .803
Reward X Demand Level X Trial Block 0.1673 (0.0591) .005%*
Reward X Demand Level X NFC 0.0669 (0.0411) 104
Reward X Trial Block X NFC 0.0359 (0.0469) 444
Demand Level X Trial Block X NFC 0.0302 (0.0397) 448
Reward X Demand Level X Trial Block X NFC —0.1252 (0.0585) .033*

Note. NFC = need for cognition; SE = standard error.
* Denotes significance at p < .05 level.

incongruent condition, we would expect—as in Experiment 1—that
participants would learn the negligible marginal value of effort invest-
ment and would accordingly cease to modulate effort in accordance
with incentives over time. As in Experiment 1, we formalized these
learning predictions with two different models. First, we simulated a
“naive” model that allocates control input directly in proportion to
reward incentives (Figure 6C) irrespective of demand context. Then,
we considered a model that has learned the differing marginal value
of effort for each context (Figure 6B), which scales these control input
increases by the marginal value of effort for each context, yielding the
predicted pattern of incongruence costs in depicted in Figure 6D.

Figure 5
The Eriksen Flanker Task, Used in Experiment 2

A  Congruent Trial

ITI [1000ms]

context and
available reward [1000ms]

Flanker stimulus
[ <1000ms ]

you win
10¢

Note.

reward [1000ms]

Method
Participants

We recruited 100 U.S. participants on MTurk, who were paid a
fixed amount ($4 U.S.) plus a bonus contingent on their task per-
formance, ranging from $1 to $2. Participants provided informed
consent in accordance with the McGill University Research Ethics
Board. We excluded the data of 20 participants who failed to per-
form with an accuracy of at least 75% on congruent trials and 14
participants who missed 10% or more response deadlines on either
the preliminary or reward phase of the task, leaving 66 participants

Incongruent Trial

ITI [1000ms]

context and
available reward [1000ms]

Flanker stimulus
[<1000ms ]

IS [500ms]

reward [1000ms]

you win
10¢

The reward available for making a correct response was displayed before the stimulus, and proportion

of incongruent trials (i.e., demand level) was signaled by a green or red (light and dark gray, respectively, in
print) border around the screen. ITI = intertrial interval; ISI = interstimulus interval. See the online article for

the color version of this figure.
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Figure 6

Simulated Flanker Incongruence Costs Resulting From Model Simulations
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Panel A: Simulated flanker incongruence effects costs (expressed as the difference between median

incongruent and congruent RTs) as a function of control input, plotted for the 50% incongruent (low-demand)
context and 80% incongruent (high-demand) context. Panel B: Change in incongruence cost with respect to
increases in control input for 50% incongruent (low-demand) context and 80% incongruent (high-demand)
contexts. Panel C: Predicted incongruence costs, as a function of reward incentive level, for a model that indis-
criminately increases control input with reward level. Panel D: Predicted incongruence costs for a model that
increases control with reward levels in accordance with the marginal value of effort in each demand context.

in the final analyses.' Prior to the flanker task, participants com-
pleted the NFC and BIS/BAS questionnaires.

Flanker Task

Participants performed a standard version of the flanker task
(see Figure 5) in which they were required to identify the direc-
tionality of a central target (< or >) presented between four con-
gruent or incongruent flankers on either side of the stimulus
(Eriksen & Eriksen, 1974), and the stimulus remained on the
screen until the participant responded or 1,000 ms had elapsed.
The timing and presentation of feedback for both the preliminary
and reward phase of the task mirrored Experiment 1. In a prelimi-
nary (no reward) phase, participants first completed 50 low-
demand trials (50% proportion incongruent) and 50 high-demand
trials (80% proportion incongruent) to familiarize themselves with
the flanker task and each demand level. The order of these demand
levels was counterbalanced across participants. On all trials, the
demand level context was signaled by a colored border (green vs.
red, signaling low and high demand, respectively).

Following the preliminary phase, subjects began the reward phase,
where, following Experiment 1, a number at the beginning of each
trial signaled the reward available (1 or 10 cents) for making a cor-
rect response. Each demand level block was 20 trials long, comprised

of two reward miniblocks of 10 trials of 1- or 10-cent incentives. Par-
ticipants completed 12 demand context blocks, the orders of which
were pseudorandomized across participants, totaling 240 trials.

Data Analysis

Following Experiment 1, we omitted the first five trials of
each demand block to ensure that flanker behavior reflected the
demand level of the current context and excluded outlier trials
with RTs greater than 3 standard deviations (note that the exclu-
sion of these outlier RTs does not affect the key patterns of sig-
nificance described below). Our mixed-effects regression
approach mirrored that of Experiment 1 but took each mini-
block’s incongruence costs—computed as the mean log-trans-
formed correct incongruent RT minus the mean log-transformed
correct congruent RT—as the outcome variable. We took all pre-
dictor variables as fixed and random effects (see online
supplemental materials for regression equation).

! We should note this sample was collected during the global coronavirus
pandemic (November 2020). Participant samples collected during this period
have been characterized previously as less attentive MTurk than previous
MTurk samples (Arechar & Rand, 2021).
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Flanker Task Adaptation of Yeung and Monsell’s (2003)
Model

As Yeung and Monsell’s response competition model of task
switching can also account for flanker- or Stroop-like incongru-
ence effects in the case of tasks with unequal strength (irrespective
of repetitions or switches of the to-be-completed task), we adapted
the model to make predictions about incongruence costs in the
flanker task, which, importantly, varies as a function of the propor-
tion of incongruent trials. To do this, we assume that each flanker
trial involves two (possibly) competing “tasks”—identifying the
directionality of the flanker stimuli versus identifying the direc-
tionality of the center stimulus—and that flanker stimuli exert
more influence over responses than the central stimulus (Yu et al.,
2009). Specifically, we assume that the “flanker” task and “center”
task have respective strength parameters of .6 and .2. We further
assume that control input is only applied to the center task, and
accordingly, the flanker task receives zero control input on every
trial.

In line with the literature on congruency sequence effects (Braem
et al., 2019; Gratton et al., 1992), we assume trial-by-trial priming
effects apply that depend on the congruency status of the previous
trial. Namely, we assume that both the center and flanker tasks
were primed when the previous trial was congruent (as both led to
the correct response) and that task priming only takes effect for the
center task (but not the flanker task) when the previous trial type
was incongruent, to simulate the idea that people focus more on the
relevant dimension following incongruent trials (e.g., Botvinick et
al., 2001) or carry over control settings from the previous trial more
generally (e.g., Braem et al., 2019; Egner, 2014). Following Yeung
and Monsell’s original model, the resolution time (in Equation 5
above) is governed by:

resolution time

=7r+f [V— (generation time; — generation time J)] (6)

where r was sampled from an ex-Gaussian distribution (i = 150,
c =10, T =40) and fis a function that dictates whether the differ-
ence in generation time between the two tasks causes interference
or facilitation. Following Yeung and Monsell, ftakes a value of .5
for incongruent stimuli and O for congruent stimuli.

We simulated 500,000 trials under each demand level (50% vs.
80% proportion incongruent) at control input parameter values rang-
ing from .05 to .20. The task priming and threshold parameters were
set arbitrarily to .4 and 300, respectively. The flanker incongruence
effect was computed as the difference between incongruent and

Table 4

congruent RTs (Figure 6A). As in the task-switching model, we also
computed an approximate derivative of incongruence effects with
respect to control input (Figure 6B) via backward differencing. We
applied the same procedure as described above to simulate the effect
of reward incentives in the flanker task model, initially setting margin-
al_value to .1 in both reward contexts (Figure 6C) and, after learning,
setting marginal_value to .1 and .025 in the low- and high-demand
contexts (Figure 6D), respectively (mirroring the approximate ratio of
the slopes of the incongruence costs depicted in Figure 6B).

Results and Discussion
Overall Task Performance

We observed significant incongruence effects in the flanker task—
expressed as longer RTs on incongruent versus congruent RTs—in
low-demand (50% congruent) blocks (mixed-effects regression on
RTs: incongruence effect p = .0843, SE = .00488, p < .0001) and in
high-demand blocks (80% incongruent; B = .0729, SE = .005247,
p < .0001; see Table 4). Jointly examining the effects of trial type
(congruent vs. incongruent) and proportion incongruence upon RTs,
we observed a significant interaction between proportion of incon-
gruent trials and trial type (congruent vs. incongruent), indicating
that incongruence costs were significantly smaller in the 20% con-
gruent (high-demand) condition (B = —.0113, SE = .00482, p =
.0225), but there was no significant main effect of proportion congru-
ence (B =.003535, SE = .00399, p =.379).

Examining accuracy, we observed incongruent trials were sig-
nificantly less accurate in the low-demand condition (mixed-
effects logistic regression on accuracy: incongruence effect f§ =
—3.498, SE = 1.442, p = .0153) and in the high-demand condition
(B = —.6439, SE = 2311, p = .00534; see Table 4). We did not
observe a significant effect of proportion congruence (main effect
B = .3304, p = .2393, p = .167) nor a significant modulation of
incongruence costs by proportion incongruent trials (interaction
B =—.3332, SE =.2369, p = .160).

Reward Incentives and Incongruence Effects

We then examined flanker incongruence costs (incongruent —
congruent correct RTs) as a function of demand level (low vs.
high), reward incentive (1 cent vs. 10 cents), and trial block (first
half vs. second half). In the early blocks of the experiment (Figure
7A), reward incentive level appeared to decrease flanker effects
only in the high-demand (80% incongruent) context, but in later
blocks (Figure 7B), the locus of reward incentive effects shifted
from the high-demand to the low-demand (50% incongruent)

Average Median Response Times (RTs) and Error Rates for Congruent and Incongruent Trials Across the Reward Incentive and

Demand Levels in the Flanker Task (Experiment 2)

Reward amount Congruent RT (SD)

Incongruent RT (SD)

Congruent accuracy (SD) Incongruent accuracy (SD)

Low-demand blocks

1 cent

10 cents
High-demand blocks

1 cent

10 cents

522.12 (81.68)
519.84 (78.89)

520.7 (82.84)
523.33 (82.56)

572.39 (82.06)
565.48 (83.01)

567.52 (80.48)
559.27 (82.99)

0.98 (0.05) 0.96 (0.07)
0.99 (0.03) 0.97 (0.06)
0.99 (0.04) 0.97 (0.04)
0.99 (0.04) 0.97 (0.05)
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Figure 7

Flanker Incongruence Costs in Experiment 2, Expressed as the Difference
Between Median Incongruent RTs and Median Congruent RTs, as a Function of
Available Reward and Demand Context (i.e., Low Versus High Task Switch Rate)
and Trial Block (First Versus Second Half, Depicted in Panels A and B,

Respectively)
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context. This time course of reward-induced flanker effect modula-
tions is consistent with the notion that participants shifted the
locus of reward-guided control to contexts with the largest mar-
ginal benefit for control allocation—in other words, from the high-
demand condition (small marginal benefit) to the low-demand con-
dition (large marginal benefit).

We estimated a mixed-effects regression examining incongruence
costs as a function of reward, demand level, and trial block (early vs.
late; see fixed-effect coefficient estimates in Table 5), finding signifi-
cant interactions between reward and demand level (B = —.0427,
SE = .0128, p = .001), between demand level and trial block (B =
—.035, SE = .0128, p = .006), and, critically, between reward,
demand level, and trial block (B =.0701, SE = .018, p = .0001). That
is, in accordance with a learning account, the relationship between
reward incentive and demand level depended on trial block. We fur-
ther probed this interaction with post hoc pairwise tests and found
that in the first half of the experiment, reward incentive level signifi-
cantly decreased incongruence costs in the high-demand (r =
3.40257, p = .0035; all tests corrected) but not the low-demand con-
text (t = .29873, p = .7656). In the second half, we found that reward
incentive level significantly decreased incongruence costs in the low-
demand context (t = 2.272, p = .0494) but not in the high-demand
context (r = —.7015, p = .645). Mirroring the pattern of results in
Experiment 1, these comparisons suggest that reward incentives ini-
tially influenced control allocation in the high-demand context, but
later, the locus of these incentive effects shifted to the low-demand
context.

As in Experiment 1, we also probed whether the apparent with-
drawal of effort in the high-demand condition resulted in lower over-
all levels of reward receipt. To do this, we analyzed trial accuracy on
high-demand blocks as a function of trial block (early vs. late) and
found no significant effect of trial block upon accuracy on high-
demand blocks (B = —.1085, SE = .1418, p = .444). Again, the ab-
sence of trial block effect in the high-demand condition indicates that
effort modulations became less sensitive to varying incentives levels
over time, rather than a general decrease over time in overall per-
formance. Finally, examining the possibility of a fatigue explanation
for the time-dependent disappearance of a reward effect in the high-

reward available per trial

demand condition, we probed whether RTs slowed over time in the
high-demand context, finding little support for a slowing effect
(effect of trial number: f = —.002317, SE = .004, p = .1598; interac-
tion between trial number and trial type B = —.005250, SE = .00375,
p =.167). We also found no evidence for more general fatigue effects
(see online supplemental materials).

Individual Differences in Need for Cognition (NFC) and
Reward Sensitivity (BAS)

Finally, following the exploratory analyses in Experiment 1, we
probed whether individual differences in NFC moderated the
learning effects observed in the flanker task. Adding individual
NFC scores to the incongruence cost predicting model reported
above, we observed no significant interactions between NFC and
reward level, demand level, trial block, and the possible interac-
tions between these variables (ps > .355; see Table 6 for full coef-
ficients). The lack of predictive effect of NFC suggests that, unlike
in task switching, individual differences in intrinsic motivation to
exert cognitive effort did not exert any predictive bearing on
reward-guided control allocation (and its learning) in the flanker
task. Similarly, we did not observe any interactions between BAS
reward responsivity and reward effects on incongruence costs, or
between reward responsivity, demand level, and trial block (all
interactions ps > .228). Put another way, our observed learning
effects in the flanker task were similar for both low- and high-
NFC individuals, possibly due to the considerably different struc-
ture of the flanker task.

General Discussion

The notion that reward incentives can mobilize cognitive proc-
essing resources has been influential and finds broad empirical
support (Kool & Botvinick, 2018; Westbrook & Braver, 2015).
Up to now, investigations of cost-benefit effort decision-making
have typically treated costs and benefits as factors that exert a
time-invariant influence on effort allocation decisions, presuming
that given reward incentive level will evoke the same change in
effort allocation at different times. Here, we considered the
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Table 5

Mixed-Effects Regression Coefficients Indicating the Influence of
Demand Level (Proportion Incongruent Trials), Reward Incentive
Level, and Experimental Block (Early Versus Late) Upon Flanker
Incongruence Costs in Experiment 2

Coefficient Estimate (SE) p value
(Intercept) 0.0761 (0.0076)  <.0001*
Reward 0.0202 (0.009) .026*
Demand level 0.0125 (0.0092) 177
Trial block 0.017 (0.0094) .073
Reward X Demand Level —0.0427 (0.0128) .001*
Reward X Trial Block —0.0391 (0.0128) .002*
Demand Level X Trial Block —0.035 (0.0128) .006*
Reward X Demand Level X Trial Block 0.0701 (0.018) .0001*

Note. SE = standard error.
* Denotes significance at p < .05 level.

possibility that people learn the marginal utility of allocating addi-
tional cognitive effort—that is, the benefit of increasing control
allocation in accordance with incentives—over time.

Across two different cognitive control paradigms, we exam-
ined how reward-induced effort modulations vary over time
across contexts with different marginal utilities of effort invest-
ment. We found compelling evidence that people learn to effi-
ciently allocate effort in accordance with both the incentives
and the context-dependent, marginal utility of increasing effort
allocation, illustrated by simulations of a simple computational
model (Figures 2 and 6). In task switching (Experiment 1), par-
ticipants initially exhibited reward-induced effort increases in
both high- and low-switch-rate contexts—as evidenced by
decreases in task switch costs—but over time ceased to modu-
late effort investment in the high-switch-rate context. Similarly,
we examined the same apparent learning in the flanker task

Table 6

(Experiment 2) by manipulating demand contexts by altering
the proportion of incongruent trials. We found that participants
learned to increase effort investment in low-demand contexts,
where increasing control allocation results in appreciable
reductions of incongruence costs, and at the same time ceased
investing effort in accordance with incentives in the high-
demand contexts, where increasing control allocation results in
appreciable reductions of incongruence costs.

These results highlight the importance of marginal utility calcu-
lation in cost-benefit decision-making about cognitive effort allo-
cation. Further, they speak to influential accounts of motivation,
explaining the relationship between task demand and effort invest-
ment (Brehm & Self, 1989). The classic motivational intensity
theory (MIT) postulates that individuals invest effort only when it
yields a tangible benefit, withdrawing resources when this is not
the case. This basic tenet is fully in line with our results. Second,
MIT postulates then when difficulty is unknown, effort investment
fully depends on “success importance” (i.e., the influence of
reward incentive in the case of our task). This is in line with partic-
ipants’ initial behavior (where switch cost reduction is overall
driven by reward) and with the idea that after learning of the mar-
ginal benefit, effort investment changes (resources are withdrawn
when not worth it). While MIT theory’s predictions by and large
concern physiological markers of effort exertion (e.g., cardiovas-
cular reactivity; Gendolla et al., 2012), our results show how they
conceptually align with learning efficient effort allocation over
time across two established cognitive control paradigms, in terms
of switch costs (Experiment 1) or flanker incongruence costs
(Experiment 2).

An important question concerns the sort of learning underlying the
changes in effortful behavior observed here: What aspect(s) of the
task environment are participants learning in order to produce the
apparent changes in reward-induced control allocation between early
and late blocks of the experiments? One possibility is that the notion

Mixed-Effects Regression Coelfficients Indicating the Influence of Demand Level (Proportion
Incongruent Trials), Reward Incentive Level, Experimental Block (Early Versus Late), and Need
for Cognition Upon Flanker Incongruence Costs in Experiment 2

Coefficient Estimate (SE) p value
(Intercept) 0.0761 (0.0077) <.0001°*
Reward 0.0202 (0.0091) .027%*
Demand level 0.0125 (0.0093) 18
Trial block 0.017 (0.0095) .074
NFC —0.0072 (0.0077) .346
Reward X Demand Level —0.0427 (0.0128) .001*
Reward X Trial Block —0.0391 (0.0128) .002%*
Demand Level X Trial Block —0.035 (0.0128) .007*
Reward X NFC 0.0084 (0.0091) 355
Demand Level X NFC 0.0048 (0.0093) .606
Trial Block X NFC 0.0006 (0.0095) 952
Reward X Demand Level X Trial Block 0.0701 (0.0182) <.0001*
Reward X Demand Level X NFC —0.0092 (0.0128) 473
Reward X Trial Block X NFC —0.0099 (0.0128) 442
Demand Level X Trial Block X NFC —0.0042 (0.0128) 744
Reward X Demand Level X Trial Block X NFC 0.0027 (0.0182) .881

Note.
* Denotes significance at p < .05 level.

NFC = need for cognition; SE = standard error.
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of the marginal value of effort is a general principle (or rule of
thumb) that humans and animals abide by, to varying extents (Hsee
et al., 2003; Reinagel, 2021), in making real-world effort allocation
decisions, but in each task domain, the relationship governing effort
increases and performance benefits is learned experientially. Accord-
ingly, we believe the learned insensitivity of control allocation levels
to reward incentives (in accordance with demand level) observed
here reflects participants” application of this general principle to the
specific task domains and operationalizations of demand examined
here, which requires that participants have had enough experience to
learn the appropriate effort-performance relationships in different
demand contexts. On this view, individuals are capable of adjusting
effort expenditure in accordance with its marginal utility, but we
would only expect to observe that participants tune reward-induced
effort increases in accordance with demand context after having
learned the specific effort-performance relationship for each demand
context in our experiments. Future research should endeavor to
understand (a) the extent to which peoples’ understanding and appli-
cation of marginal value of effort is a general phenomenon divorced
from specific task domains and (b) how and when an individual’s
learning (and application) of this general principle unfolds over the
life span (Insel et al., 2017; Rodman et al., 2021).

Beyond learning an efficient demand-level and reward-guided
effort allocation strategy, we also observed that participants’ task
switch costs were smaller in high-switch-rate (i.e., high-demand)
contexts and their flanker incongruence costs were smaller in con-
texts with a high proportion of incongruent stimuli, suggesting that
participants adjusted their levels of control in accordance with the
environmental demand level. These shifts in control allocation
mirror previous findings in task-switching (Liu & Yeung, 2020)
and flanker (Aben et al., 2017) paradigms. A tacit assumption in
these lines of work is that participants must somehow learn to
adapt control allocation to the environmental demand level—irre-
spective of reward incentives—over time. Indeed, we found vary-
ing degrees of evidence for this sort of learning in the two
experiments, vis-a-vis interactions between trial block and switch/
incongruence costs (Tables 2 and 5). We assume that these pre-
sumably strategic shifts in reward-induced effort allocation are
operating over and above these more general shifts in control
mode prompted by environment demand level (and the regression
modeling approach we take supports that interpretation). Nonethe-
less, as little previous work has addressed how individuals learn
this sort of control allocation strategy, understanding the nature of
learning of these broader control adaptations would also be a fruit-
ful avenue for future research.

Another key question concerns how the brain computes and repre-
sents the marginal utility of effort and, furthermore, how this is used
to modulate attention and decision-making. One proposed neuro-
computational model, the reinforcement metalearner (Silvetti et al.,
2018), suggests that cognitive control optimization results from the
interplay between mesolimbic dopamine (coding for effort costs and
reward-related information), norepinephrine (implementing control),
and the medial prefrontal cortex (operating performance monitoring
and deciding control signal intensity). This cortical-subcortical circuit
directs cognitive control allocation by minimizing the cost of control,
maximizing reward, and weighting the control-dependent perform-
ance improvement—that is, the marginal utility of effort. From this
perspective, cognitive control allocation is boosted only when its re-
sultant performance improvements overcome its intrinsic cost.

Marginal utility computation is thus part of an optimization process
in which the brain learns to efficiently allocate control, which in turn
influences reward-based decision-making (metalearning). Similarly,
our experimental result suggests refinements to other reinforcement-
learning-based accounts of effort allocation (Holroyd & McClure,
2015; Lieder et al., 2018; Shenhav et al., 2017) to incorporate, over
and above the value of effort exertion, peoples’ apparent sensitivity
to the (presumably learned) relationship between changes in effort
investment and changes in performance.

It is also worth noting that in high-demand conditions in the sec-
ond half of both experiments, participants did not appear to modulate
their control levels in accordance with the incentive levels available.
In our account, this lack of differentiation between reward levels is a
result of learning that exerting additional effort to either reduce
switch costs (in Experiment 1) or flanker incongruence costs (in
Experiment 2) confers little performance benefits in high-demand
conditions. Indeed, inspecting the high-demand condition in Experi-
ment 1, we observed that high-incentive (10-cent) switch costs
actually increased over time—resembling the low-incentive switch
costs observed in the first half of the experiment— suggesting that
participants simply ceased to intensify their control levels in accord-
ance with incentives. However, in Experiment 2, we observed a dif-
ferent pattern of control modulation in the high-demand condition:
Participants began to up-regulate their control on low-incentive con-
ditions such that the low- and high-incentive incongruence costs both
began to resemble the high-incentive incongruence costs observed
early in the experiment. It is possible that, here, the lack of apparent
differentiation between these incentive levels resulted from partici-
pants intensifying their control levels in the high-demand context
over time, irrespective of incentive levels (resulting in lower incon-
gruence costs across both incentive levels), rather than learning to
withhold additional control in the high-incentive condition, possibly
because maintaining a high level of control with in a demand context
is less effortful than continually reallocating control on a trial-by-trial
basis. At the same time, flanker-like effects—unlike task switch costs
(Rogers & Monsell, 1995)—have been observed to decrease incre-
mentally over time with repeated task exposure (Kelley & Yantis,
2009), suggesting that these changes in control modulations could be
operating over and above decreases in “baseline” incongruence costs
in the flanker task. Future work should aim to address (a) the general-
ity of these observed effects across task domains and (b) the possibil-
ity that individuals might find effortful—and consequently, avoid—
frequent reallocation of cognitive control in response to changing in-
centive levels in favor of maintaining a steady control level.

We also found, in Experiment 1, that individuals low in NFC—
who have little intrinsic motivation to expend cognitive effort—
appeared to be more sensitive to the marginal utility of effort
investment. In other words, the learning effects we observed with
respect to reward-modulated switch cost reductions appeared
strongest in low-NFC individuals. We previously found that NFC
predicts the extent to which individuals exhibit reward-modulated
task switch cost reductions (Sandra & Otto, 2018). The present
result adds nuance to the idea that subjective effort costs (opera-
tionalized by low NFC levels) bear upon not only benefit sensitiv-
ity but also sensitivity to the marginal utility of effort investment.
Curiously, we did not observe this predictive effect in the flanker
task (Experiment 2), which was considerably easier (see overall
task performance in Table 1 vs. Table 4). This could suggest that
NFC might only exhibit predictive bearing on effort outlay (or
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changes in effort outlay) in sufficiently difficult tasks. Supporting
this idea, a recent study found no evidence for a relationship
between NFC levels and flanker effects (Gértner et al., 2021). At
the same time, it is possible that the effective 66-participant sam-
ple in Experiment 2 could have been underpowered to detect a
statistically meaningful predictive relationship between NFC lev-
els and changes in reward-induced control allocation over time.

One open question concerns whether an individual’s NFC level
—which has also been interpreted as reflecting an individual’s
subjective effort cost (Inzlicht et al., 2018)—might have predictive
bearing on the individual’s default control level in the present
tasks. Through the lens of the simple computational model consid-
ered here (Figure 1C), it might be the case that low- versus high-
NFC individuals employ higher default control levels. Future
work could leverage physiological measures like pupillometry to
elucidate both default levels and reward-induced changes in effort
allocation (van der Wel & van Steenbergen, 2018). To this point,
we have also found suggestive evidence that the relationship
between task-evoked pupillary responses and task switch costs is
stronger in low-NFC individuals (da Silva Castanheira et al.,
2021).

Interestingly, our results also dovetail with the recent observa-
tion that the efficacy of cognitive effort—the environmental con-
tingency between performance and reward receipt, holding
demand constant—is a critical determinant of individuals’ reward-
induced effort investment in a Stroop-like task (Fromer et al.,
2021). When efficacy, which was explicitly signaled to partici-
pants before each trial, was high, participants were more inclined
to invest effort in the task in accordance with varying incentive
level (as evidenced by faster and more accurate responses) com-
pared to when efficacy was low. In contrast to this design, the
present experiments did not instruct participants about the mar-
ginal utility of effort expenditure, but nonetheless, both our results
and Fromer et al.’s result suggest that participants appeared to find
reward-guided effort allocation strategies efficient.

It is also worth noting that the task switch rate manipulation in
Experiment 1—used to define demand contexts—simultaneously
alters both the control demands of task switching (Mayr et al.,
2013; Monsell & Mizon, 2006) and the trial-to-trial predictability
of the subtask. That is, the 50% (vs. 10%) switch rate in the high-
demand condition is more difficult not only because participants
need to maintain flexible control in the face of increased task
switches but also because the task to be completed in each trial is
less predictable. While recent studies have found that individuals
both avoid roughly equiprobable task switch rates (Sayal &
Badre, 2019) and experience them as more demanding (Devine &
Otto, 2021), the present design does not allow us to disentangle
the joint contributions of control demands and unpredictability to
the increased demand level of the high-demand context. Nonethe-
less, our overarching hypotheses about flexible, reward-guided
allocation of control over time concern experienced demand levels
associated with different contexts but are agnostic to specific
source(s) of the demand level differences and presuppose only that
one context need be more difficult than another. An open question,
then, concerns the relative contributions of control demands and
task unpredictability to cost-benefit effort decision-making.

Another plausible alternative explanation for the pattern of
results observed in Experiment 2 (the flanker task) could be that
participants did not adjust “control parameters” over time but

adjusted the extent to which they chose to rely on learned contin-
gencies between task features and responses (Schmidt, 2019). For
example, in the high-demand (80% incongruent) context of the
flanker task, the flanking arrows were predictive of the response
(i.e., with 80% accuracy). Accordingly, participants may exhibit
smaller incongruence costs in the high-demand context not
because they allocate more control but simply because they bene-
fited more from the mostly predictive flanker feature—that is, they
learned that they can simply make the opposite response as indi-
cated by the visually dominating flanker arrows. By the same to-
ken, in the high-demand context, participants were also more
likely to experience incongruent stimuli and benefit from exact
trial repetitions. However, while these (arguably) low-level forms
of learning have been demonstrated to contribute substantially to
the modulation of congruence effects by proportion congruence in
flanker and flanker-like tasks (Braem et al., 2019; Schmidt, 2019),
it is unclear why such contingency learning effects would further
interact with reward and experiment half in the manner we
observed here. Supporting the differential demand interpretation
of the two flanker task contexts examined here, a body of literature
suggests that individuals rate flanker-like tasks with higher propor-
tions of incongruent trials as more demanding than settings with
smaller proportions of incongruent trials (Desender et al., 2017)
and prefer to avoid these contexts if given the choice (Schouppe et
al., 2014). Nonetheless, useful follow-up experiments would be to
investigate whether these learning effects are observed using para-
digms with equal opportunities for contingency learning across
both demand conditions (e.g., 20% incongruent vs. 80% incongru-
ent) or paradigms without opportunities for contingency learning
(Braem et al., 2019; Schmidt, 2019).

It is also worth pointing out that in these two experiments, par-
ticipants were incentivized to make accurate responses (within a
certain response deadline), but we operationalized exertion of cog-
nitive effort using RT-based measures. We should note here that a
number of studies examining motivated cognitive control also
index control/effort allocation using RT-based measures but,
importantly, tie reward incentives—cued before each trial or block
of the to-be-completed task—to response accuracy. For example,
past studies by other groups (Braem et al., 2012; Capa et al., 2013;
Umemoto & Holroyd, 2015) and our own group (da Silva Castan-
heira et al., 2021; Otto & Vassena, 2021; Vassena et al., 2019)
have repeatedly found that even when reward incentives are tied
solely to response accuracy, these incentives shape RTs in
demanding cognitive tasks. In our view, this body of work sug-
gests that individuals engage in some form of effort-reward calcu-
lus even when reward outcomes are not necessarily tied to the
performance consequences of these effort modulations. One possi-
ble interpretation of these ubiquitous RT incentive effects is that in
many of these studies (including the present experiments), partici-
pants must nonetheless expend effort to ensure their responses are
fast enough to meet RT deadlines (1,500 ms and 1,000 ms in
Experiments 1 and 2, respectively) in order to obtain the offered
reward amount. On this view, large incentives justify response
speeding, while at the same time, engaging in such speeding under
smaller incentives would constitute an unjustified, overexertion of
control. Moreover, speeding (or, alternatively, invigoration of
responses) while either maintaining or improving accuracy is often
interpreted as a signature of effort investment (Hiibner &
Schldsser, 2010; Manohar et al., 2015; Otto & Daw, 2019).
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Finally, it is worth noting that the demand contexts were explic-
itly signaled with border colors (and minimal instructions) in both
experiments (Figures 1 and 5), which we believe was necessary
here for participants to cumulatively learn the demand contexts
over blocks and, accordingly, the marginal utility of effort. It
remains an open question whether participants would be able to
learn the demand context without explicit cues and evidence the
type of learning exhibited in the two experiments reported here.
On the basis of prior flanker work finding evidence for implicit
learning of control requirements (Ghinescu et al., 2010)—that is,
without any instructions describing the relationship between cues
signaling proportion of incongruent trials—we might expect that
the learning effects observed here might also be possible in envi-
ronments without clear cues signaling demand contexts.
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