
Contents lists available at ScienceDirect

Journal of Neuroscience Methods
journal homepage: www.elsevier.com/locate/jneumeth

Probing relationships between reinforcement learning and simple
behavioral strategies to understand probabilistic reward learning
Eshaan S. Iyera,1, Megan A. Kairissb,1, Adrian Liuc, A. Ross Ottob, Rosemary C. Bagotb,d,*
a Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
bDepartment of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC H3A 1B1, Canada
c Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
d Ludmer Centre for Neuroinformatics and Mental Health, 3661 Rue University, Montréal, QC H3A 2B3, Canada

A R T I C L E I N F O

Keywords:
Win stay/Lose shift
Reinforcement learning
Maximum likelihood
Parameter estimation
Behavioral strategy

A B S T R A C T

Background: Reinforcement learning (RL) and win stay/lose shift model accounts of decision making are both
widely used to describe how individuals learn about and interact with rewarding environments. Though mu-
tually informative, these accounts are often conceptualized as independent processes and so the potential re-
lationships between win stay/lose shift tendencies and RL parameters have not been explored.
New method: We introduce a methodology to directly relate RL parameters to behavioral strategy. Specifically,
by calculating a truncated multivariate normal distribution of RL parameters given win stay/lose shift tendencies
from simulating these tendencies across the parameter space, we maximize the normal distribution for a given
set of win stay/lose shift tendencies to approximate reinforcement learning parameters.
Results: We demonstrate novel relationships between win stay/lose shift tendencies and RL parameters that
challenge conventional interpretations of lose shift as a metric of loss sensitivity. Further, we demonstrate in
both simulated and empirical data that this method of parameter approximation yields reliable parameter re-
covery.
Comparison with existing method: We compare this method against the conventionally used maximum likelihood
estimation method for parameter approximation in simulated noisy and empirical data. For simulated noisy
data, we show that this method performs similarly to maximum likelihood estimation. For empirical data,
however, this method provides a more reliable approximation of reinforcement learning parameters than
maximum likelihood estimation.
Conclusions: We demonstrate the existence of relationships between win stay/lose shift tendencies and RL
parameters and introduce a method that leverages these relationships to enable recovery of RL parameters
exclusively from win stay/lose shift tendencies.

1. Introduction

The ability to learn from experience is crucial for survival. To suc-
cessfully negotiate their environment, individuals must learn from
outcomes while balancing exploration with exploitation to efficiently
maximize rewards, avoid punishments, and integrate new con-
tingencies. Learning is hypothesized to occur within a theoretical fra-
mework known as reinforcement learning (RL) in which learning ac-
crues from the discrepancy between an expectation and an outcome,
termed a prediction error (Rescorla and Wagner, 1972). Recent years
have seen a surge of interest within the field of behavioral neuroscience
in applying RL models to probe fundamental questions about how

individuals learn (Bathellier et al., 2013; Gustafson & Daw, 2011;
Kuchibhotla et al., 2019; Langdon et al., 2019; Noworyta-Sokolowska
et al., 2019; Stachenfeld et al., 2017). Within the RL framework, an
‘action value’ is learned through prediction errors that are modulated
by a learning rate, which weights the influence of prediction errors on
yielding new action values. These action values are then transformed
into actions using a choice rule such as the ‘softmax’ rule. Using RL to
model decision-making behavior within an environment that yields
both positive and negative outcomes can reveal differences in how in-
dividuals learn from their environment (Langdon et al., 2019;
Noworyta-Sokolowska et al., 2019; St-Amand et al., 2018; Verharen
et al., 2019).
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While RL models are commonly implemented in binary choice tasks
such as a probabilistic reversal learning task, they are highly flexible
and can be implemented in a wide range of behavioral tasks including
multi-arm bandit tasks as well as in more naturalistic foraging and
spatial navigation tasks (Gustafson and Daw, 2011; Langdon et al.,
2019; Noworyta-Sokolowska et al., 2019; Stachenfeld et al., 2017). At
its core, RL is best suited to provide a model of how individuals interact
with their environment, whether that be the rate at which they learn
from feedback, internal representations of action values, or choice
transition probabilities. RL models generate a variety of metrics in-
cluding learning rates, choice stochasticity, action values for a given
choice at a given trial, and probabilities for action selection (Daw,
2011). These parameters are estimated from a dataset by fitting a set of
parameters that best explain the observed choice behavior, and can be
expanded to include any number of factors the experimenter hypothe-
sizes may be influencing behavior, such as perseveration or other
choice biases. One common approach to RL model parameter estima-
tion relies upon maximum likelihood estimation (MLE) to maximize a
likelihood function to recover the most probable set of parameters
given an observed choice of actions and outcomes.

Behavior within an RL framework can be understood more in-
tuitively as following the logic of Thorndike’s law of effect where the
results of an action act to alter the strength of the action itself
(Thorndike, 1927). RL learning rules assume that the most recent out-
come exerts the most influence on the current choice, which assumes
that behavior on a given trial, n, depends upon the choice and outcome
on preceding trial, n− 1. This relationship has been formalized as a
simple strategy known as win stay/lose shift (WSLS; (Herrnstein, 2000).
This framework captures whether the previous trial was rewarded or
not and if the choice on the current trial repeats or switches from the
previous choice (Dalton et al., 2014). For example, if the individual is
rewarded on trial n− 1 and then chooses the same option on trial n,
this is termed a ‘win stay’, whereas if a different choice is made on trial
n following reward on n− 1, this is termed a ‘win shift’. If the in-
dividual is not rewarded on trial n− 1 and makes the same choice on
trial n, this is termed ‘lose stay’, and a ‘lose shift’ if a different option is
chosen. The proportion of win stay and lose shift responses made by an
individual is interpreted as a metric of sensitivity to positive and ne-
gative outcomes, respectively. Higher win stay probabilities are inter-
preted as increased sensitivity to positive feedback while higher lose
shift scores are interpreted as increased sensitivity to negative feedback
(St Onge et al., 2011).

Both RL models and WSLS analyses attempt to describe how in-
dividuals learn from their environment, yet these approaches have
largely existed in parallel literatures. A number of studies have con-
trasted RL and WSLS as separate strategies that individuals may dif-
ferentially utilize, or as potential population markers (Ahn et al., 2014;
Otto et al., 2011; Worthy and Maddox, 2012, 2014). A previous attempt
to harmonize RL and WSLS into a singular model, called the WSLS-RL
model, treated WSLS and RL as independent descriptors of behavior
weighted differently by subject. In this model, action probabilities are
first computed using a typical RL modeling with a softmax rule and are
then ‘mixed’ with WSLS probabilities to generate new action prob-
abilities (Worthy and Maddox, 2014). However, if RL is an accurate
description of learning and behavior, WSLS and RL analyses are likely
not independent descriptors of behavior. Though WSLS uses a prob-
abilistic description of strategy-based tendencies while RL uses the
concept of learning rates to propagate prediction errors, both WSLS and
RL rely heavily upon recent outcomes to explain future behavior. This
suggests that these models describe some sort of common underlying
proclivity, leading us to predict a correspondence between WSLS ten-
dencies and RL parameters.

Here, we demonstrate, with both model simulation exercises and
empirical data, that RL parameters and WSLS tendencies can, under
certain circumstances, serve as mutually informative descriptors of
behavior. To do this, we examine the relationship between WSLS

tendencies and RL parameters in a probabilistic reinforcement task in
both simulated data and rodent behavioral data. We demonstrate how
this relationship can be used to calculate a normal distribution function
that can be maximized to estimate RL parameters, under certain cir-
cumstances, on the basis of WSLS tendencies. Because WSLS is a be-
havioral tendency integrated over many trials, it should not change
dramatically with small fluctuations or perturbations in behavior. We
suggest that this method of RL parameter recovery is robust in data sets
with noise as well as small numbers of trials, features common to be-
havioral neuroscience research. Furthermore, our novel WSLS para-
meter estimation approach renders RL modeling readily accessible to
behavioral neuroscience researchers who may not have specific com-
putational modeling expertise, allowing for simplified recovery of RL
parameters from input of WSLS probabilities.

2. Methods

2.1. Model simulations and estimation

2.1.1. Task specification
2.1.1.1. Probabilistic binary choice task. In this probabilistic binary
choice task, an agent was required to choose between one of two
options with one option delivering a reward with 80% probability and
the other option rewarded at 20% probability. Agents were required to
make either 100 or 1000 total choices depending on the specified
model.

2.1.1.2. Probabilistic reversal learning task. This probabilistic reversal
learning task followed the same basic conditions described above in the
probabilistic binary choice task with the added complexity that
following five consecutive choices of the higher reward probability
option, the contingencies reversed such that the option that had
delivered a reward at 80% probability now delivered reward with
20% probability and the option that had delivered a reward at 20%
probability now delivered a reward with 80% probability (Dalton et al.,
2014; St Onge et al., 2011; Verharen et al., 2019). The number of
reversals was not constrained other than by the total number of choices
required (100 or 1000 total choices depending on the specified model).

2.1.2. Reinforcement learning model
We simulated the behavior of a reinforcement learning agent that

utilizes the model-free reinforcement learning approach in a probabil-
istic binary choice task and a probabilistic reversal learning task
(Rescorla and Wagner, 1972; Sutton and Barto, 2011; Watkins, 1989).
In this model, an agent selects a certain option on trial t that results in
the delivery of a reward or not. For each trial, the expected reward
value, or Q value, for an action ai is compared with the actual reward,
yielding a prediction error t,= r Q a t( , )t t i

whereQ a t( , )i represents the expected reward value for an action ai and
rt represents whether or not a reward was delivered r [0,1]t . This
prediction error is modified by the learning rate parameter (α) and used
to update the Q values for action ai for the following trial where α is
bounded between 0 and 1.+ = +Q a t Q a t( , 1) ( , )i i t

To calculate the probability of choosing a certain action, the Q va-
lues are inputted into a softmax decision rule, multiplied by an ‘inverse
temperature’ parameter (β; bounded between 0 and 10):

= =P a Q a t
Q a t

( ) exp( ( , ))
exp( ( , ))i

i

j j1
2

(3)
As the value of β tends towards infinity, the highest Q value option

is more likely to be chosen while as β tends towards 0, both options
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become equally probable.

2.1.3. Win stay lose shift (WSLS)
We calculated win stay/lose shift tendencies from the reinforcement

learning agent’s behavior in the probabilistic binary choice and prob-
abilistic reversal learning tasks. To do this we defined a win stay (WS)
as trials in which the previous trial (n− 1) was rewarded and the
choice on the current trial n is the same with the choice on trial n− 1.
We calculated WS probabilities as the proportion of trials with WS
behavior given a previously rewarded trial. We defined a lose shift (LS)
as a trial in which the previous trial (n− 1) was unrewarded and the
choice on the current trial n differs from the choice on trial n− 1. We
calculated LS probabilities as a proportion of trials with LS behavior
given that the previous trial was unrewarded.

Following the assumptions made by RL, recent outcomes have a
greater influence on a current choice. To account for the influence of
recent but not immediate outcomes for a given choice, we also ex-
amined the influence of 2-back trials (n− 2) on choice on current trial
n by looking at 2-back WSLS tendencies in conjunction with 1-back
trials (n− 1). To do this we defined win stay-2 (WS2) as being trials in
which trial n− 2 was rewarded and the choice on the current trial n is
concordant with the choice on trial n− 2. We calculated WS2 prob-
abilities as a proportion of trials with WS2 behavior given that the trial
n− 2 was rewarded. We defined lose shift-2 (LS2) as being trials in
which trial n− 2 was unrewarded and the choice on the current trial n
differs from the choice on trial n− 2. We calculated LS2 probabilities as
a proportion of trials with LS2 behavior given that the trial n− 2 was
unrewarded.

2.1.4. WSLS estimation (WSLSE)
To establish the relationship between WSLS tendencies and RL, we

simulated behavior in a learning task using a RL model. We discretized
the parameter space to include α values between 0.01 and 1, in-
cremented linearly in steps of 0.01, and β between 0 and 10 in-
cremented linearly in steps of 1. For each possible combination of α and
β, we simulated trial-by-trial behavior for 100 and for 1000 trials using
the RL algorithm detailed above with the starting Q values initialized to
0.5.

We used this simulated choice behavior to approximate a multi-
variate probability distribution function to calculate the set of RL
parameters that correspond to a given set of WSLS behavior. To do this
we first calculated WS, LS, WS2, and LS2 probabilities at each combi-
nation of RL parameters. We repeated this process 1000 times for each
parameter combination to account for the probabilistic nature of the
simulation process. We then calculated the variance of WS, LS, WS2,
and LS2 using Eq. (4),

= =Var x
x x

n
( )

( )
1

i
n

i1
2

(4)
and the covariance between WS, LS, WS2, and LS2 using Eq. (5)

= =Cov x y
x x y y
n

( , )
( )( )

1
i
n

i i1
(5)

at each combination of RL parameters. Using the variances and
covariance of WSLS tendencies we then created a series of covariance
matrices: WS LS, (100), for WS and LS behavior for 100 trials, WS LS, (1000),
for WS and LS behavior for 1000 trials, WS LS WS LS, , 2, 2 (100), for WS, LS,
WS2, and LS2 behavior for 100 trials, and WS LS WS LS, , 2, 2 (1000), for WS,
LS, WS2, and LS2 behavior for 1000 trials. We used either 100 or 1000
trials, as these are representative of trial numbers typically seen ex-
perimentally. These four unique covariance matrices allowed us to in-
dependently examine how increasing trial number and adding a 2-back
component to the model impacts accuracy.

Because WSLS tendencies lie between 0 and 1, we used a truncated
multivariate normal distribution to model the observed multivariate

WSLS distribution at each given combination of RL parameters. To
accomplish this, we utilized the tmvnorm package in R (Wilhelm and
Manjunath, 2010), which gives the generalized case of the truncated
multivariate Gaussian as

=f x µ a b x µ x µ
x µ x µ dx

( , , , ) exp[ 0.5( ) ( )]
exp[ 0.5( ) ( )]

T

a
b T

1

1 (6)
where x represents a vector of observational variables, which in our
case is either [WS, LS] or [WS, LS, WS2, LS2], µ represents the vector of
means, a represents the vector of upper truncation points, and b re-
presents the vector of lower truncation points. In correspondence with
the upper and lower bounds of WS and LS tendencies, we truncated WS,
LS, WS2, and LS2 at 0 and 1. Using Eq. (6), we approximated a normal
probability distribution function for the RL parameter space, given a set
of WSLS values. By maximizing this probability distribution function,
we are able to identify a set of RL parameters that best describes the
observed WSLS behavior.

This code is accessible through https://github.com/BagotLab/
WSLSE.

2.1.5. Maximum likelihood estimation (MLE)
To fit RL parameters to data, we used the Nelder-Mead (1965) op-

timization method to identify parameters that maximized the likelihood
of an agent’s choice given its history of choices and outcomes (cf. Daw,
2011).

2.2. Empirical data analysis

2.2.1. Animals
Seven-week-old C57/Bl6J mice (12 male, 12 female) were obtained

from Jackson Laboratories and housed in same-sex groups of four on a
regular 12 h light-dark cycle at 22−25 °C with ad libitum access to food
and water for one week prior to behavioral training. At the start of
training, food was removed and mice were food restricted to 85% of
their original body weight. Animals were weighed daily throughout the
course of the experiment and food adjusted as required to maintain
bodyweight. All experiments were conducted in accordance with
guidelines of McGill’s Animal Care Committee.

2.2.2. Behavioral testing
Operant conditioning was conducted in sound attenuating con-

ditioning chambers (Med Associates) with two retractable levers either
side of a food port from which 20mg chocolate pellets (Bio-Serv Inc.)
were delivered. Animals were initially trained on a fixed ratio-1 (FR1)
schedule in which each press on the designated active lever resulted in
the delivery of a chocolate pellet followed by a five second time-out
period during which further lever presses had no effect. Presses on the
other lever, designated the inactive lever, at any point had no effect.
Following three days of FR1, animals progressed to the Probabilistic
Binary Choice Task in which one lever was rewarded with a probability
of 80% and the other lever was rewarded with a probability of 20%.
Following each lever press, both levers retracted for five seconds before
extending again to indicate trial onset. Each training session lasted
30min.

2.2.3. WSLS estimation (WSLSE)
For approximation of RL parameters from empirical animal beha-

vioral data, WSLSE was performed on the first 100 trials following the
same procedure as used for data simulations, outlined above. Briefly,
for each animal, we approximated and then maximized the probability
distribution function for a set of RL parameters using the WSLSE
method. Win stay/lose shift probabilities (WS, LS, WS2, LS2) were
calculated based on the action history of each animal. The means and
covariance matrices used were generated from the simulated choice
behavior described above.
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2.2.4. Maximum likelihood estimation (MLE)
To fit RL parameters from empirical animal behavioral, we used the

Nelder-Mead optimization on the first 100 trials as described above
(Nelder and Mead, 1965).

2.2.5. Statistics
Inferential statistical analyses were performed using Prism 7

(GraphPad Software Inc.). To compare parameter estimates in empirical
data, we compared group means by t-test and variances by an F-test of
equality of variances. Grubbs' test for outliers was used in the empirical
data analysis to identify and exclude outliers.

3. Results

3.1. WSLS tendencies and RL parameters

To probe the relationship between WSLS tendencies and RL para-
meters, we simulated the behavior of an RL agent that uses a single
learning rate in a simple probabilistic binary choice task where one
option is rewarded with 80% probability and the other option is re-
warded with 20% probability. For each combination of learning rate
and inverse temperature parameter, we simulated this agent’s behavior
1000 times to calculate mean win stay and lose shift probabilities.
Fig. 1A depicts win stay probabilities as a function of the learning rate
and inverse temperature parameters for a range of plausible parameter
values. For a given inverse temperature parameter value, win stay
probabilities increase as the learning rate increases before reaching a
plateau. Likewise, for a given learning rate, increasing the inverse
temperature parameter, increases win stay probabilities, though in a
more dramatic way. This relationship tracks with our understanding of
RL. Individuals with high learning rates learn more from prediction
errors and thus, following a rewarding outcome, are more likely to stick
with the previously rewarded choice.

The observed relationship between lose shift tendencies and RL
parameters (Fig. 1C) is more complex. At very low inverse tempera-
tures, regardless of learning rate, lose shift probabilities do not deviate
noticeably from 0.5. At higher inverse temperature para-
meters—meaning choices are more sensitive to learned values—the
relationship between lose shift probabilities and learning rate assumes
an inverted-U shape, with lose shift probabilities first decreasing then
subsequently increasing with further increases in learning rate. The
minimum of this inverted-U decreases as the inverse temperature in-
creases. Lose shift peaks at both low and high learning rates with the
lowest lose shift probabilities observed at intermediate learning rates.
The U-shaped relationship is likely due to the fact that at very low
learning rates, agents learn little from either reward or loss causing
them to behave more randomly. As an agent begins to learn more from
reward and loss, we see their behavior quickly drop off to low lose shift
probabilities at slightly higher, but still relatively low learning rates,
and then increase as the learning rates increase. For both win stay and
lose shift, as inverse temperature decreases, the probability of behavior
approaches chance. A similar effect can be seen for win stay and lose
shift probabilities as learning rate decreases, but this effect appears to
be more strongly modulated by inverse temperature. We also probed
the relationship between 2-back trial behavior and RL parameters to
examine the influence of recent, but not immediate trials. As expected,
we find the relationship between 2-back win stay and RL parameters is
similar but not identical to that of the 1-back win-stay (Fig. 1B) and the
relationship between 2-back lose shift and RL parameters is similar to
that of 1-back lose shift (Fig. 1D).

The relationship between win stay and lose shift tendencies also
appears to vary with RL parameters across both 1- (Fig. 1E) and 2-back
trials (Fig. 1F). In both 1- and 2-back trials, this relationship takes a
similar inverted-U shape to that between lose shift tendencies and RL
parameters. At low inverse temperatures, win stay and lose shift ten-
dencies are very similar with this ratio decreasing as inverse

temperature increases and decreasing, then increasing, as learning rate
increases.

Having established the relationships between RL parameters and
win stay and lose shift tendencies, we then reasoned that, if indeed
these relationships exist, it should be possible to predict RL parameters
given a set of win stay and lose shift probabilities by approximating a
multivariate probability distribution of RL parameters for a given set of
win stay and lose shift probabilities. To accomplish this, we calculated
and then maximized a truncated multivariate normal distribution of RL
parameters given specific win stay and lose shift probabilities.

3.2. WSLSE for RL parameter recovery

To assess the accuracy of parameter recovery by win stay lose shift
estimation (WSLSE), we correlated recovered RL parameters to simu-
lated ground truths established by randomly sampling a uniform dis-
tribution of learning rates between 0 and 1 and inverse temperatures
between 0 and 10 (Ballard and McClure, 2019; Virtanen et al., 2020;
Wilson and Collins, 2019). Each randomly sampled RL parameter was
then used to simulate 100 choices in a fixed binary choice task from
which win stay and lose shift probabilities were calculated. We selected
a set size of 100 choices as it is representative of trial set sizes com-
monly used to estimate RL parameters in the literature (St-Amand et al.,
2018; Wimmer et al., 2014; Wunderlich et al., 2009). We then used the
win stay and lose shift probabilities to calculate then maximize a
truncated multivariate normal distribution to estimate the RL para-
meters. Repeating this process 1000 times, we correlated the means of
the truncated normal distributions to the randomly sampled RL para-
meters. The correlation between ground-truth parameter values and
parameters estimated by WSLSE for 100 trials was r= 0.7188 for
learning rate (Fig. 2A) and r= 0.8004 for inverse temperature
(Fig. 2C). This increased to r= 0.9204 for learning rate (Fig. 2E) and
r= 0.9628 for inverse temperature (Fig. 2G) for 1000 trials. In com-
parison, the conventionally used maximum likelihood estimation (MLE)
approach yielded a correlation to ground truth of r= 0.7734 for
learning rate (Fig. 2B) and r= 0.8383 for inverse temperature (Fig. 2D)
for 100 trials. For 1000 trials, this increased to r= 0.9379 for learning
rate (Fig. 2F) and r= 0.9707 for inverse temperature (Fig. 2H). The
average negative log likelihood of parameters recovered using WSLSE
are similar to those estimated using MLE (Table 1). The negative log
likelihood values and correlations suggest that this WSLSE method can
produce reasonably accurate parameter recovery comparable to the
conventionally used MLE method, and also confirms the relationship we
identified between WSLS tendencies and RL parameters.

Visually comparing correlations between WSLSE and MLE, suggests
that MLE reacts differently than WSLSE when approximating RL para-
meters. When MLE struggles to describe the data, parameters are pu-
shed towards the boundaries (Daw, 2011). In contrast, under similar
conditions, WSLSE confines parameters within a restricted range con-
strained by the win stay and lose shift probabilities, suggesting that,
while WSLSE may be somewhat less precise, in real data it may be more
accurate than MLE and less prone to dramatic errors. Visual examina-
tion of these correlations also illustrates that at low trial numbers
WSLSE has a tendency to bias away from low learning rates. This
suggests that in conditions where experimenters have reason to expect
very low learning rates, MLE may be preferable to WSLSE.

3.3. -Back WSLSE for RL parameter recovery

A key assumption made by RL models, by virtue of the learning
rules employed (Eqs. (1) and (2)), is that more recent outcomes will
exert greater influence on a current choice. However, to account for the
influence of recent trials on the current trial beyond 1 trial back, we
incorporated win stay and lose shift probabilities from 2-back trials
alongside the win stay and lose shift probabilities from 1-back trials.
These two additional observational variables further restrict the range
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Fig. 1. (a) Heatmap visualization of simulated mean win stay behavior as a function of RL parameters in a probabilistic binary choice task. Holding the inverse
temperature constant and increasing the learning rate, WS probabilities increase before reaching a plateau. A similar relationship is observed increasing the inverse
temperature across a constant learning rate. (b) Heatmap visualization of simulated mean 2-back win stay behavior. 2-back win stay behavior is similar to 1-back win
stay behavior, however, increasing the inverse temperature for high learning rates does not increase WS probabilities as much. (c) Heatmap visualization of simulated
mean lose shift behavior as a function of RL parameters. Although complex, in general, as inverse temperature increases, LS tends to decrease, and tends towards a
minimum at intermediate learning rates and a maximum at low and high learning rates. (d) Heatmap visualization of simulated mean 2-back lose shift behavior. 2-
back lose shift behavior is similar to 2-back lose shift behavior with higher probabilities closer to 0.5. (e) Heatmap visualization of the ratio of simulated mean lose
shift behavior to win stay behavior as a function of RL parameters in a probabilistic binary choice task. A ratio closer to 1 indicates equal probabilities of win stay and
lose shift behavior while a ratio closer to 0 indicates a higher probability of win stay behavior compared to lose shift behavior. (f) Heatmap visualization of the ratio
of simulated mean 2-back lose shift behavior to 2-back win stay behavior as a function of RL parameters in a probabilistic binary choice task. A ratio closer to 1
indicates equal probabilities of win stay and lose shift behavior while a ratio closer to 0 indicates a higher probability of win stay behavior compared to lose shift
behavior.

E.S. Iyer, et al. -RXUQDO�RI�1HXURVFLHQFH�0HWKRGV������������������

�



Fig. 2. Correlation between simulated
ground truth and parameters recovered
in a Probabilistic Binary Choice Task for
(a) learning rate (r= 0.7188,
p < 0.0001) using 1-back WSLSE, (b)
learning rate (r= 0.7734, p < 0.0001)
using MLE, (c) inverse temperature
(r= 0.8004, p < 0.0001) using 1-back
WSLSE, (d) inverse temperature
(r= 0.8383, p < 0.0001) using MLE for
100 trials for 1000 simulated subjects.
Correlation between simulated ground
truth and parameters recovered in a
Probabilistic Binary Choice Task for (e)
learning rate (r= 0.9204, p < 0.0001)
using 1-back WSLSE, (f) learning rate
(r= 0.9379, p < 0.0001) using MLE,
(g) inverse temperature (r= 0. 9628,
p < 0.0001) using 1-back WSLSE, (h)
inverse temperature (r= 0.9707,
p < 0.0001) using MLE for 1000 trials
for 1000 simulated subjects.
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of possible RL parameters and so should serve to increase parameter
recovery. We used a similar procedure as 1-back WSLSE, using win stay,
lose shift, 2-back win stay, and 2-back lose shift probabilities to cal-
culate and then maximized a truncated multivariate normal distribution
to estimate RL parameters. Correlating simulated ground truths to re-
covered parameters for 2-back WSLSE for 100 trials yielded a correla-
tion of r= 0.7752 for learning rate (Fig. 3A) and r= 0.8055 for inverse
temperature (Fig. 3C). Using MLE for 100 trials, this resulted in a
correlation of r= 0.8009 for learning rate (Fig. 3B) and r= 0.8383 for
inverse temperature (Fig. 3D). For 1000 trials this yielded a correlation
of r= 0.9533 for learning rate (Fig. 3E) and r= 0.9629 for inverse
temperature (Fig. 3G). Using MLE for 100 trials, this resulted in a
correlation of r= 0.9457 for learning rate (Fig. 3F) and r= 0.9756 for
inverse temperature (Fig. 3H).

Comparing the negative log likelihoods for the 1-back WSLSE and 2-
back WSLSE reveals that at 100 trials, 2-back WSLSE has a lower ne-
gative log likelihood, indicating higher likelihood (Table 1). The ne-
gative log likelihood is also marginally lower for 2-back WSLSE at 1000
trials, mirroring the marginal improvement in accuracy of 2-back
WSLSE over at 1000 trials. Thus while 2-back WSLSE for RL parameter
recovery modestly improves accuracy for 100 trials and increases the
likelihood of recovered parameters, it offers no clear advantage over 1-
back WSLSE for 1000 trials.

3.4. WSLSE is applicable in a range of tasks

To illustrate the adaptability and broader applicability of WSLSE,
we assessed parameter recoverability in a reversal learning task. We
simulated the behavior of an agent that uses a single learning rate in a
probabilistic reversal learning task where one option is rewarded with
80% probability and the other option 20% and the contingencies re-
verse after choosing the higher reward probability option on five con-
secutive trials (St Onge et al., 2011; Verharen et al., 2019). To confirm
the existence of relationships between behavior in the reversal learning
task and RL parameters, we plotted heatmaps of simulated mean win
stay and lose shift behavior. Though similar to behavior in the prob-
abilistic binary choice task, we find lose shift behavior is generally more
probable in this reversal learning task (Fig. 4). We then calculated a
covariance matrix for win stay and lose shift behavior and used this to
calculate then maximize a truncated multivariate normal distribution of
RL parameters given specific win stay, lose shift, 2-back win stay, and 2-
back lose shift probabilities. Correlating ground-truth parameter values
to recovered parameters within a probabilistic reversal learning task
yielded a correlation of r= 0.7342 for learning rate (Fig. 5A) and
r= 0.8158 for inverse temperature (Fig. 5C) for 100 trials. In simula-
tions with 1000 trials, this correlation increased to r= 0.9535 for
learning rate (Fig. 5E) and r= 0.9351 for inverse temperature
(Fig. 5G). Using MLE, this yielded a correlation to ground truth of
r= 0.7830 for learning rate (Fig. 5B) and r= 0.8426 for inverse tem-
perature (Fig. 5D) for 100 trials and a correlation of r= 0.9457 for
learning rate (Fig. 5H) and r= 0.9756 for inverse temperature (Fig. 5F)
for 1000 trials. As with the probabilistic binary choice task, the average
negative log likelihood of parameters recovered using WSLSE are
comparable to those estimated using MLE (Table 2). This demonstrates
that WSLSE can recover parameters for a range of tasks, requiring only

the simulation of agent behavior within a specified task and the cal-
culation of a corresponding covariance matrix for WSLS behavior.

3.5. WSLSE for noisy RL parameter recovery

Classical simulations likely overestimate parameter recoverability
as they assume choice behavior is determined solely by RL processes,
and fail to consider the inherently noisy and idiosyncratic nature of
observed behavior. To account for this, we repeated the above corre-
lation exercise, modeling one of three sources of systematic noise in the
2-back model for 100 trials. We used the 2-back model to assess
learning rate recovery under noise because of the improved accuracy it
offers at lower trial numbers as demonstrated above. We compared the
use of WSLSE to the conventionally used maximum likelihood estima-
tion (MLE) approach to estimate RL parameters from noisy data. The
amount of noise was scaled from zero to ten percent to determine how
WSLSE compares to MLE for increasingly noisy data. To model random,
non-systematic noise, trials were ‘flipped’. Changing a small percent of
trials should not significantly shift RL parameters and so a reliable
method of estimating RL parameters should be robust to such noise at
low levels. To model perseverance-derived noise (i.e., unexplained
streaks of consecutive choices of one action), a sequence of singular
responses on consecutive trials was inserted. This type of noise is often
observed in behavioral data and may represent a distinct perseverative
process occurring alongside learning. To model noise derived from an
alternating strategy, a sequence of alternating choices was inserted
randomly into each simulated data set. Similar to perseverative noise,
this type of noise is observed in behavioral data and is suggestive of a
distinct strategy-based approach that may occur alongside learning
processes. Because the goal of RL approaches is to describe the learning
processes that underlie behavior, a good RL model should be robust to
such noise.

We found that the method was reasonably robust to random noise;
flipping the results of an increasing percent of 100 trials resulted in
relatively stable parameter recovery for both MLE and WSLSE across
both learning rate and inverse temperature with slightly higher accu-
racy using MLE to recover learning rate (Fig. 6A and B). WSLSE was
largely robust to perseverance-derived noise, performing similarly to
MLE for learning rate recovery (Fig. 6D). Interestingly, WSLSE was
more robust than MLE for inverse temperature parameter recovery,
remaining generally stable as perseverance-derived noise increased
(Fig. 6E). Both MLE and WSLSE were less robust for learning rate
parameter recovery in data with noise from an alternating strategy
(Fig. 6G). WSLSE for inverse temperature parameter recovery, however,
was more robust to noise from an alternating strategy than MLE
(Fig. 6H). Structured noise arising from perseverance or alternating
strategies indicate that an individual is no longer sensitive to outcomes,
with choice behavior guided by some alternate mechanism. This lack of
sensitivity to outcome represents a deviation from the assumptions of
reinforcement learning and thus understandably decreases the accuracy
of parameter recovery. MLE and WSLSE both yielded similar negative
log likelihood values across the various types of noise with MLE ex-
pectedly yielding slightly higher negative log likelihood values than
WSLSE (Fig. 6C, F and I).

3.6. WSLSE for analysis of empirical animal choice behavior

The utility of a learning model such as RL rests upon its ability to
describe phenomena in empirical data. To assess this, we replicated the
simulated probabilistic binary choice task, in a cohort of male and fe-
male mice to probe potential differences in how WSLSE and the con-
ventionally implemented MLE describe empirical data. We first calcu-
lated 1 and 2-back win stay and lose shift behavior (Fig. 7A and B) and
used these values to implement WSLSE. We did not detect any average
differences between WSLSE and MLE of either learning rate or inverse
temperature parameters (Fig. 7C, D and E). This demonstrates that at a

Table 1
Average negative log-likelihood values for parameters recovered using 1-Back
Win stay Lose shift Estimation (WSLSE), 2-Back WSLSE, and Maximum
Likelihood Estimation (MLE) for 100 and 1000 trials in a Probabilistic Binary
Choice Task.

1-Back WSLSE 2-Back WSLSE MLE

100 trials 30.085 29.490 27.895
1000 trials 250.654 250.241 247.448
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Fig. 3. Correlation between simulated
ground truth and parameters recovered
in a Probabilistic Binary Choice Task for
(a) learning rate (r=0.7752,
p < 0.0001) using 2-back WSLSE, (b)
learning rate (r=0.8009, p < 0.0001)
using MLE, (c) inverse temperature
(r=0. 8055, p < 0.0001) using 2-back
WSLSE, (d) inverse temperature
(r=0.8383, p < 0.0001) using MLE for
100 trials for 1000 simulated subjects.
Correlation between simulated ground
truth and parameters recovered in a
Probabilistic Binary Choice Task for (e)
learning rate (r=0.9533, p < 0.0001)
using 2-back WSLSE, (f) learning rate
(r=0.9457, p < 0.0001) using MLE,
(g) inverse temperature (r=0.9629,
p < 0.0001) using 2-back WSLSE, (h)
inverse temperature (r=0.9756,
p < 0.0001) using MLE for 1000 trials
for 1000 simulated subjects.
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Fig. 4. (a) Heatmap visualization of simulated mean win stay behavior as a function of RL parameters in a probabilistic reversal learning task. (b) Heatmap
visualization of simulated mean 2-back win stay behavior. 2-back win stay behavior is similar to 1-back behavior, though increasing the inverse temperature for high
learning rates does not increase WS probabilities as much. (c) Heatmap visualization of simulated mean lose shift behavior as a function of RL parameters in a
probabilistic reversal learning task. (d) Heatmap visualization of simulated mean 2-back lose shift behavior. 2-back lose shift behavior is similar to 1-back behavior
with higher probabilities closer to 0.5. (e) Heatmap visualization of the ratio of simulated mean lose shift behavior to win stay behavior as a function of RL
parameters in a probabilistic reversal learning task. A ratio closer to 1 indicates equal probabilities of win stay and lose shift behavior while a ratio closer to 0
indicates a higher probability of win stay behavior compared to lose shift behavior. (f) Heatmap visualization of the ratio of simulated mean 2-back lose shift
behavior to 2-back win stay behavior as a function of RL parameters in a probabilistic reversal learning task. A ratio closer to 1 indicates equal probabilities of win
stay and lose shift behavior while a ratio closer to 0 indicates a higher probability of win stay behavior compared to lose shift behavior.
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Fig. 5. Correlation between simu-
lated ground truth and parameters
recovered in a probabilistic reversal
learning task for (a) learning rate
(r= 0.7342, p < 0.0001) using 2-
back WSLSE, (b) learning rate
(r= 0.7830, p < 0.0001) using
MLE, (c) inverse temperature
(r= 0.8158, p < 0.0001) using 2-
back WSLSE, (d) inverse temperature
(r= 0.8426, p < 0.0001) using MLE
for 100 trials for 1000 simulated
subjects. Correlation between simu-
lated ground truth and parameters
recovered in a probabilistic reversal
learning task for (e) learning rate
(r= 0.9695, p < 0.0001) using 2-
back WSLSE, (f) learning rate
(r= 0.9457, p < 0.0001) using
MLE, (g) inverse temperature
(r= 0.9351, p < 0.0001) using 2-
back WSLSE, (h) inverse temperature
(r= 0.9756, p < 0.0001) using MLE
for 1000 trials for 1000 simulated
subjects.
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population level, our method of WSLSE estimation performs just as well
as MLE in empirical data.

However, assessment of equality of variances indicated a significant
difference between WSLE and MLE for both learning rate
(S2WSLSE= 0.00541, S2MLE= 0.013142 F21,21= 2.427, p= 0.0481) and
inverse temperature (S2WSLSE= 0.66073, S2MLE= 11.50416,
F21,21= 17.41, p=0.0001). This indicates that while both approaches
arrive at similar group-level estimates, MLE approximates a more

variable set of RL parameters. This is particularly apparent in the ex-
ploitation parameter estimates. Because the RL parameters are being
estimated from a single population, we would not expect to see the
spread of parameters observed in the MLE estimates. MLE also tends to
push the exploitation parameter, β, estimates towards the boundary
value of 10. This mirrors the observation in simulated data, that, when
MLE struggles to describe data, it pushes parameters to the boundary
(Daw, 2011). Here in the observed choice data, this is likely a con-
sequence of the small number of trials (100). The more constrained set
of parameters generated by WSLSE suggests this parameter estimation
method generates more accurate parameter values than the typical MLE
approach under the suboptimal conditions of lower trial numbers or
increased noise that commonly occur in empirical data.

4. Discussion

Here we demonstrated the existence of a relationship between WSLS
tendencies and RL and then leveraged this to create a novel method of

Table 2
Average negative log-likelihood values for parameters recovered using 2-Back
WSLSE, and Maximum Likelihood Estimation for 100 and 1000 trials in a
probabilistic reversal learning task.

2-Back WSLSE MLE

100 trials 42.422 42.489
1000 trials 473.768 437.694

Fig. 6. Correlation between simulated ground truths and recovered parameters in a probabilistic binary choice task for 100 trials for 1000 simulated subjects using
WSLSE and MLE across simulated noise varying between zero and ten percent (a) with modeled random noise for learning rate and (b) inverse temperature; (d) with
modeled perseverance-derived noise for learning rate and (e) inverse temperature; (g) with modeled alternating strategy-derived noise for learning rate and (h)
inverse temperature. Average negative log likelihood values for recovered parameters in a probabilistic binary choice task for 100 trials for 1000 simulated subjects
recovered using WSLSE and MLE across simulated noise varying between zero and ten percent (c) with modeled random noise, (f) with modeled perseverance-
derived noise, and (i) with modeled alternating strategy-derived noise.
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RL parameter estimation. We found that our novel method of RL
parameter estimation, WSLSE, performs with precision comparable to
the conventional MLE approach under ideal conditions, as well as
conditions with simulated random noise, and, critically, with empirical
data with unknown noise. A major advantage of our model is the ease of
implementation. Instead of performing maximum likelihood estimation
across trial-by-trial data, our model simply makes use of the set of WSLS
tendencies in a given learning task. This simplicity has the potential to
increase the accessibility of RL parameter estimation, in turn fostering
more translational approaches between the fields of behavioral and
computational neuroscience.

Traditionally, higher win stay probabilities are interpreted as in-
creased sensitivity to positive feedback while higher lose shift scores are
interpreted as increased sensitivity to negative feedback (Bari et al.,
2010; Paulus et al., 2002; St Onge et al., 2011). For the win stay metric,
this means that the more individuals learn from positive prediction
errors, the more likely they are to stay following a rewarding outcome.
We indeed observe this relationship, with win stay probabilities in-
creasing with learning rate, suggesting that the win stay metric corre-
sponds to increased sensitivity to positive feedback. For lose shift, the
traditional interpretation implies that the more individuals learn from
negative prediction errors, the more likely they are to shift following a
loss. Following this logic, we would expect a higher learning to corre-
spond to higher lose shift probabilities, similar to the relationship be-
tween learning rates and win stay. What we see instead is a more
parabolic relationship with both low and high learning rates corre-
sponding to higher lose shift probabilities and more medial learning
rates corresponding to lower lose shift probabilities. This more complex
relationship is due to the fact that in order for individuals to be sensitive
to loss, they must first have learned about reward. At low learning rates,
this renders the lose shift metric meaningless. This challenges simplistic
interpretations of the lose shift metric. Additionally, because of the
nature of the relationship between lose shift probabilities and learning
rates, lose shift probabilities at both low and high learning rates look
similar, further complicating any meaningful interpretation of lose shift

probabilities without additional information about learning rates.
Our novel method of WSLSE of RL parameters essentially provides a

means of translating between WSLS and RL frameworks. Though they
share a similar logic, i.e. that the outcome of previous choice impacts
current choice, these two frameworks have existed in parallel to one
other with little cross-talk. Behavioral analysis within a WSLS frame-
work has a long history in the field of behavioral neuroscience
(Schusterman, 1962; Slotnick and Katz, 1974; Williams, 1972). Our
method provides a unique opportunity to stimulate cross-talk between
WSLS and RL-based analyses of behavior, which are increasingly used,
by facilitating simple translation of published WSLS behavioral data
into an RL context, shedding light on previously obscured exploitation
parameters and learning rates to unify these literatures.

Our model makes use of a simple reinforcement learning agent. In
recent years there has been increasing interest in more complex re-
inforcement learning models that incorporate features such as dual
learning rates and stickiness parameters, (Balcarras et al., 2016;
Gershman, 2015; Langdon et al., 2019; Noworyta-Sokolowska et al.,
2019). Our WSLSE approach is readily adaptable to approximate RL
parameters for more elaborate models; however, such modifications
would require certain considerations. With increasing numbers of dis-
tinct parameters, potential parameter combinations increase ex-
ponentially, making the requisite simulations for WSLSE substantially
more computationally intensive. However, these simulations need be
performed once only. Of greater concern is that, with increasing para-
meters, the ability of a limited set of WSLS probabilities to predict said
parameters becomes less reliable. WSLSE for models with a high
number of free parameters will likely approximate parameters with
extremely high standard deviations. This could be mitigated by in-
corporating additional task-specific behavioral metrics such as total
rewards earned, number of reversals completed, or n-back trial beha-
viors in addition to WSLS probabilities, to further restrict the parameter
space, and thereby increase parameter recoverability.

Models are powerful in their ability to describe behavior in terms of
its discrete latent underlying processes. However, when different

Fig. 7. (a) Win stay and win stay 2 behavior in a binary probabilistic choice task. (b) Lose shift and lose shift 2 behavior in a binary probabilistic choice task. All error
bars indicate standard error of the mean. (c) Comparison of learning rate approximation using WSLSE and MLE in a binary probabilistic choice task (t-test comparison
of means: t= 1.316, p= 0.1954; F-test for equality of variances: F21,21 = 2.427, p= 0.0481). (d) Comparison of inverse temperature approximation using WSLSE
and MLE in a binary probabilistic choice task (t-test comparison of means: t= 0.9828, p= 0.3313; F-test for equality of variances: F21,21= 17.41, p=0.0001). (e)
Comparison of negative log likelihood values calculated from the RL parameters approximated using WSLSE and MLE in a binary probabilistic choice task. All error
bars indicate standard error of the mean.
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models describe similar behaviors, it can become difficult to converse
across models. In these situations, the approach that is most often taken
is to either create a hybrid model that combines facets of both models,
creating a single encompassing model or to directly compare the models
to each other to try and identify the superior model. We have instead
used one model (RL), to explain the behavior of another model (WSLS)
and shown that the second model (WSLS) can also be used to approx-
imate the processes underlying the first (RL). This suggests that, even
though WSLS and RL describe slightly different behavioral processes,
ultimately, they explain much of the same variance. In explicating this
link, we have created a simple and flexible method of performing RL
parameter approximation, which instead of using trial-by-trial data,
simply uses bulk WSLS tendencies. This simplified approach, reduces
barriers to implementing computational modeling of RL and will enable
increased communication between computational and behavioral neu-
roscience, ultimately leading to both a proliferation of new research
and integration of the existing wealth of published behavioral data into
reinforcement learning.
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