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Reinforcement Learning (RL) Model 
 
The reinforcement-learning (RL) model used in this study is based on a hybrid of model-
free (𝑄(! )) and model-based (explicit computation of top level state-action values), as 
utilized in previous studies (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Otto, 
Raio, Chiang, Phelps, & Daw, 2013). Experiment 1 comprised two conditions (gold and 
silver), each of which had three unique states (first stage: sA; second stage: sB and sC). 
The first stage in each condition had two available actions (aA and aB), while the second 

stages did not, but rather were probabilistically followed by reward (where probabilities 
drifted gradually over time). Note that the implementation of the computational model for 
Experiment 2 was exactly the same as for Experiment 1, except that only one state was in 
play, rather than two. The hybrid model employed consists of model-based and model-
free subcomponents, both of which estimate a state-action value function, QMF(sA, a) 

(model-free) and QMB(sA, a) (model-based), which maps each possible action to its 
expected future reward. On trial t, we denote the first-stage state (always sA) by s1,t, the 

second-stage states by s2,t, the chosen first-stage action by at, and the second-stage 
rewards as rt . 
 
Model-free component 

For the model-free algorithm, we used Q(!), temporal difference (TD) learning (Peng & 
Williams, 1996), which updates the value for the visited state-action pair at s1,t according 

to: 

𝑄!" ! !!! ! ! ! ! 𝑄!" 𝑠!,! ,𝑎! + ! ! ! ,! 

where!! !,! is the reward prediction error (RPE) at state 1, trial t: 

! ! !! ! ! !" ! !,! !! !! !" ! ! ,! , ! !  

and " is a learning rate parameter, which is constant across conditions and states for a  
given individual. Thus, for the first-stage choice, the RPE is driven based on the second-
stage value, ! !" ! ! ,! !!Second-stage values are themselves updated according to: 

! !" ! ! !! = 𝑄!" ! !!! + ! 𝛿! ,!  

where the RPE is determined by whether or not the trial was rewarded, 𝑟! : 

𝛿! !! ! 𝑟! !! !! !" 𝑠! !!  

We treat the gold and silver states as separate from one another; that is, Q-values for the 



gold and silver states were learned independently of one another, as was the structure of 
the task. The model uses an eligibility trace to propagate second-stage reward 
information to the first-stage values. Specifically, at the end of each trial, the first-stage 
values are updated according to:  

! !" ! ! !! ! ! ! ! ! !" ! ! !! ! ! ! ! !" ! ! !! 

where ! is an eligibility trace decay parameter (Sutton & Barto, 1998). We assume that 
eligibility traces are reset to 0 between episodes (i.e., that eligibility does not carry over 
from trial to trial). Additionally, at the end of each trial, we decayed the Q values for all 
of the non-selected actions by multiplying them by 1 # " (Ito & Doya, 2009; Lau & 
Glimcher, 2005). This decay makes the present model correspond more closely to the 
one-trial-back regression model described in the main text, in the limit as "$1.  

Model-based component 

In general, a model-based RL algorithm works by learning a transition function (mapping 
state-action pairs to a probability distribution over the subsequent state), and immediate 
reward values for each state, then computing cumulative state-action values by iterative 
expectation over these. Specialized to the structure of the current task, this amounts to, 
first deciding which first-stage action maps to which second-stage state (because subjects 
were instructed that this was the structure of the transition contingencies), and second, 
learning reward values for each of the second-stage states.  

We modeled transition learning by assuming subjects simply chose between the two 
possibilities: ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! !7 or vice versa ! 𝑠! !! ! ! ! ! !
0!3! ! ! ! !𝑠! ! ! ! ! 0!! , with ! ! ! !! ! ! ! ! ! ! ! !! ! ! !! ! ! ! ! !and ! ! ! !! ! !𝑎! ! ! !
!! ! ! !! ! ! ! ! , according to whether more transitions had thus far occurred to sB following 
aA plus sC following aB, or vice versa to sC following aA plus sB following aB. 

At the second stage (where immediate rewards were offered), the problem of learning 
immediate rewards is equivalent to that for TD above, because ! !" ! ! !  is just an 
estimate of the immediate reward rt; with no further stages to anticipate, and the SARSA 

learning rule reduces to a delta rule for predicting the immediate reward. Thus, the two 
approaches coincide at the second stage, and we define QMB = QMF at those states. 
Critically, the top level model-based values are defined from both the transition and 
reward estimates using the Bellman Equation (Bellman, 1957):  

! !" 𝑠! ! ! ! !
= ! ! ! !! ! ! ! ! !! !" ! ! ! ! ! ! !! ! ! ! ! !! !" ! !  



where we have assumed these are recomputed on each trial from the current estimates of 
the transition probabilities and rewards. 
 
Choice rule 

Finally, to connect the values to choices, we use a softmax choice rule, which assigns a 
probability to each action according to the weighted combination of the two state-action 
value estimates ! !"# ! ! ! ! ! ! !" ! ! ! ! ! ! ! ! !" ! ! ! ! QMB and QMF , weighted 
according to a free parameter w. Choice is then softmax in the net state-action values. 

The probability of each choice at the first stage is calculated, accordingly, as 

 

! 𝑎! = !𝑎!𝑠! ,! =
!"#   !𝛽 !   ! !"# ! ! !!!𝑎 ! ! !"# ! ! ! !

! ! ! !!"# !!! ! !! !!" 𝑠! ,! , ! ′ ! ! !"# ! ! !! !
 

 
where the inverse temperature parameter !  governs the stochasticity of choices. The 
indicator function rep(𝑎) is defined as 1 if !  is the same one as was chosen on the 
previous trial, zero otherwise. Together with the ÒstickinessÓ parameter p, this captures 
first-order perseveration (p > 0) or switching (p < 0) in the first- stage choices (Lau & 
Glimcher, 2005).  
 
Group-Level Modeling 
 
Thus far we have described the modeling of a single subject’s data. This model was 
embedded within a multi-level random effects model of the population variation in its 
parameters to estimate it for all subjects simultaneously. All of the free parameters of the 
model (α, λ, β, w , p) were taken as random effects, instantiated separately for each 
subject s from a common group level distribution. For all parameters, the group level 
distributions were Gaussian with free group-level mean (𝜇!  and SD (𝜎! , plus an 
additional free slope (e.g. 𝛽! ) allowing the parameter to scale, across subjects, with their 
(z-scored) devaluation score 𝑑! . This was implemented identically in Experiments 1 and 
2, using their respective indices of devaluation sensitivity. For instance: 

𝛽!   !   !"#$%& (! !! + ! ! ! ! ! ! ! ! !  

and analogously for p. However, for the parameters with support confined to [0,1] (α, λ, 
and w) the resulting variables were transformed according to a logistic sigmoid, e.g.: 

 



! !
! !! !!"#$%& ! ! ! 𝑤! ⋅ ! !!𝜎!  

w! =
!

1 ! exp ! 𝑤!
!  

and similarly for the others. ���  

We estimated the parameters of the group level distributions 
(! !!𝜎! , ! !!𝜇! , ! !!𝛽! , ! !!𝜎! , ! !!𝜇! , ! !!𝜆! , ! !!𝜎! , ! !) using uninformative priors: for 
the parameters with infinite support (! , ! ), the prior means and devaluation slopes were 
the broad Normal(0,10), the prior SDs, the heavy-tailed Cauchy(0,2.5). For the 
parameters with finite support (α, λ, and w), we selected narrower prior distributions so 
that the sigmoid-transformed parameters were roughly uniform in [0,1] a priori; prior 
means for these parameters were Normal(0,2.5); prior variances Cauchy(0,2) and prior 
devaluation slopes Cauchy(0,2.5). 

Estimation 

We estimated the joint distribution of the parameters of the model, conditional on all 
subjects’ observed choices and rewards. For this, we used Markov Chain Monte Carlo 
(MCMC) techniques (specifically the No-U-Turn variant of Hamiltonian Monte Carlo) as 
implemented in the Stan modeling language (v2.5, 2014). Given a probabilistic 
generative model (the above equations) and a subset of observed variables, MCMC 
techniques provide samples from the conditional joint distribution over the remaining 
random variables. We ran four chains of 4,000 samples each, discarding the first 2,000 
samples of each chain for burn-in. We examined the chains visually for convergence and 
also computed Gelman and Rubin’s (1992) potential scale reduction factors. For this, 
large values indicate convergence problems, whereas values near 1 are consistent with 
convergence. We ensured that these diagnostics were less than 1.2 for all variables. 

 
Supplementary Regression Analyses 
 
Given our relatively large sample size and the presence of some unique task features, we 
carried out additional exploratory analyses that may be of general interest (but were 
unrelated to our hypotheses). In each experiment, there was no significant relationship 
between age (Exp1: %=0.013, SE=.022, p=.554;  Exp2: %=0.007, SE=.026, p=.802) or 
gender (coded Female=1, Male=-1) (Exp1: %=-0.024, SE=.022, p=.266; Exp2: %=0.019, 
SE=.027, p=.475) and model-based learning. Nor was there a significant relationship 
between age (Exp1: %=0.034, SE=.026, p=.198; Exp2: %=0.102, SE=.07, p=.128) or 
gender (Exp1: %=-0.038 SE=.026, p=.148; Exp2: %=0.068, SE=.07, p=.316) and model-
free learning. In Experiment 1, unlike Experiment 2 and the original version (Daw et al., 



2011), there were two independent states, one gold and another silver. Therefore, on 
some trials the previous state experienced was different from the current state. We tested 
if this affected choice behavior by including state information as an additional predictor 
in our logistic regression analysis of the learning task behavior (same state:1, different 
state: -1, relative to the previous trial). This factor was included as a random effect (i.e., 
allowed to vary across subjects) and interacted with the other explanatory variables. We 
found that when the State on the current trial was the same as that on the previous one, 
participants were more likely to make the same choice (main effect of State ��  =0.13, 

SE=.033, p<.001), were more model-free (interaction of State by Reward, �� =0.26, 
SE=.03, p<.001) and trended towards being more model-based (three-way interaction of 
State, Reward, and Transition, ��  =-.048, SE=.03, p=.068). Therefore, not unexpectedly, 
the three basic effects on the choices were more robustly observed when participants 
made choices in the same state as the immediately previous trial, whereas these effects 
were diminished when experience with the other state intervened.  
 
 
 
 
 
 
 
  



 

 
Figure S1. Result from the main logistic regression model collapsed across all 
subjects in Experiment 1 
As reported in the main text, we observed that subjects used a mixture of model-
based and model-free learning strategies, evidenced by the presence of both a main 
effect of reward (p<.0001; model-free) and a reward x transition interaction (p=.02; 
model-based).   

  



 

 

 

Figure S2. Result from the main logistic regression model collapsed across all 
subjects in Experiment 2 
As in Experiment 1, we observed that subjects used a mixture of model-based and 
model-free learning strategies, evidenced by the presence of both a main effect of 
reward (p<.0001; model-free) and a reward x transition interaction (p<.0001; 
model-based). 

 

 

 

 

 

 

 

 

 



Table S1. Experiment 1: Group-level estimates of the effect of each free parameter on 
devaluation performance in the computational model. 

 
Parameter effects on devaluation 

 
Upper 95% 

Median 
Lower 95% 

! Dev pDev !"#$  𝜷𝑫𝒆𝒗 𝒘𝑫𝒆𝒗 
0.40 0.03 3.01 0.74 2.20 
0.11 -0.08 0.07 0.34 1.01 
-0.17 -0.19 -2.21 -0.06 0.07 

 
For each parameter, the median posterior estimate is given, together with the 95% 
confidence intervals. Only the slope of wDev is significantly different from zero. 

 

Table S2. Experiment 2: Group-level estimates of the effect of each free parameter on 
devaluation performance in the computational model. 

 
Parameter effects on devaluation 

 
Upper 95% 

Median 
Lower 95% 

!Dev  pDev !"#$  𝜷𝑫𝒆𝒗 𝒘𝑫𝒆𝒗 
0.3 0.37 1.46 0.87 4.97 

-0.12 0.21 -0.76 0.35 2.92 
-0.54 0.04 -3.29 -0.16 1.44 

 
For each parameter, the median posterior estimate is given, together with the 95% 
confidence intervals. The slope of wDev and pDev (i.e. perseveration) are 
significantly different from zero.



Task Instructions for Experiment 1  

 
SCREEN 1 

Welcome. Today you will be playing a game where you can earn some extra money. 

On every turn, you will make a choice between two boxes, which will bring you to 
another box, which may or may not contain a coin. 

At the end of the game, we will convert a proportion  of what you have won into real 
money, which you can keep in addition to your hit payment. Simply put, the more coins 
you collect in the game, the more cash we will pay you when you are finished. 

Coins can be gold or silver, and are always worth 25c, regardless of color. The border of 
the screen on each turn will let you know whether gold or silver coins are available. 

You must read all of the instructions carefully. There will be a quiz before you begin the 
game and if you do not answer all of the questions correctly, you will be sent back to the 
beginning and will need to re-read them. 

 

SCREEN 2 

Before you start making choices, we will have a tutorial to show you how the game 
works. There are two things for you to learn in order to do well. We will practice these 
separately. 

The first is: 

You need to keep track of which boxes have the highest chance of having a coin inside. If 
a box contains a coin, it will appear below the box. If not, you will see a zero. 

Every time you find a box, the computer will decide whether or not to give you a coin 
based on a 'chance', which has been assigned to that box. Some boxes have a higher 
chance of having a coin inside than others. Importantly, the chances of each box 
containing a coin will change slowly, and independently, over time. It is your job to keep 
track of which boxes are currently  better than others and to try and get to these boxes. 



There are no strange patterns to this game, such as a box containing coins on every other 
choice. The computer is not trying to play tricks on you; it strictly works on the chance 
assigned to each box, which will change slowly over time. 

 

SCREEN 3 

We will now let you practice this part of the game. You need to track which 'coin boxes' 
have a better chance of having coins than others. 

Two of the coin boxes that we will show you sometimes contain silver coins, but 
will  never contain gold coins. Likewise, the other two boxes will sometimes contain gold 
coins, but will never contain silver coins. 

Unlike the real game, you won't be making any choices in this tutorial. Instead you 
simply need to pay attention to what happens on-screen so that you can work out which 
coin boxes are better than others. Learning how to do this will help you win money later 
on in the game. 

 
SCREEN 4 (following 20 practice trials passively learning which boxes are more 
likely to yield coins) 

Good. Hopefully, you saw that some boxes had a higher chance of having a coin inside 
than others. Also you probably noticed that even 'good' coin boxes didn't have a coin 
every single time. 

The second thing you need to learn is how to make choices that will bring you to coin 
boxes that are currently good. 

At the start of each turn, you will be able to choose between two boxes, which appear on 
the left and right. One of these boxes usually brings you to one of the coin boxes, and the 
other box usually brings you to the other coin box. For example, one box that you choose 
might bring you to one of the coin boxes on 7 out of 10 turns. But that means that on 3 
out of 10 turns, it will take you to another box, by mistake. These chances are fixed, so 
you just need to learn these rules once. This is unlike the goodness of the coin boxes, 
which will change slowly over time during the game. 

To sum-up: learning which boxes are more (or less) likely to bring you to each coin box 
is very important to playing the game well. If you can do this, you will be able to make 
good choices that will bring you to the coin boxes that are currently best. 



We will practice making the choices now. We won't show you the coins in this tutorial, 
so that you can concentrate on learning which choices bring you to which coin boxes. 

Press the: 

 
    E key to choose the LEFT BOX  
 
    I  key to choose the RIGHT BOX  
 

You have a limited amount of time to make each choice. Try practicing a few times right 
now. 
 

SCREEN 5 (following 20 practice trials actively learning the transition structure 
through making choices and viewing their consequences) 

Good. Hopefully you learned which choices usually lead to which coin boxes. You also 
will have noticed that by 'usually', we mean 70% of the time. That means that 30% of the 
time, you ended up in the other coin box. 

It is important to know that the chance that a certain choice takes you to a certain coin 
box does not change over time. This means that if one box usually takes you to a certain 
coin box, that relationship will stay the same throughout the game. 

 

SCREEN 6 

Now that you understand the two parts you have practiced, we will remind you how they 
fit together in the game you are about to play. On each turn, you have a choice between 
two boxes, you will choose a box that will take you to a coin box and you will see if it 
contains a coin. After you find out whether or not your box contains coins, you will go 
back to the start and make another choice and try to earn another coin and so on. 

While some of the coin boxes may become very good at times (that is, they often contain 
a coin), these same coin boxes may become bad later in the game. You need to stay on 
top of which coin boxes are best. You must use this information to make good choices 
that are likely to bring you to the boxes that are currently good. 



It costs you 1 cent to choose between the boxes and play the game on each turn. We will 
deduct this from your bonus at the end of the game. This is a good deal, because if you 
know that a box is good, you will often find a 25 cent coin inside. If you choose not to 
open one of the boxes, or are too slow to respond, there is no way that you can get a 25 
cent coin on that trial, but will save yourself 1 cent. Sometimes it might make sense to 
save yourself that 1 cent if you are really sure that there is nothing of value inside the 
coin boxes. 

 
SCREEN 7 
 
IMPORTANT:  We will store your gold and silver coins in separate containers, one for 
gold coins and one for silver coins, so we can keep track of how much you have won. 
Please note that if either of these containers fills up completely during the game, you 
have maxed-out on storing that kind of coin! You wonÕt be able to keep any more coins 
of that color for the rest of the game. That means even if you continue to find that kind of 
coin inside boxes, we wonÕt store them for you, and you wonÕt get to keep them. We 
will alert you if at any point your containers get half-way full, and again if they get 
completely full. 
 
 
SCREEN 8 (Comprehension Test ) 
(correct answers are emboldened) 

Here is a short quiz to test if you understood the instructions correctly. 

If you missed any important things, we will bring you to go through the instructions 
again. 

 
Does it cost money to play the game on each trial?  

-I donÕt know 
-Yes, it costs 1 cent 
-Yes, it costs 5 dollars 
-No, it is free to play 

 
Does the goodness of a coin box change over time? 

-I donÕt know 
-No, some boxes are good and others are bad. This will not change 
-No, coins are delivered randomly and no boxes are ever good or bad 
-Yes! It changes slowly over time 



 
Does the chance that a certain choice leads to a certain coin box change over time? 

-I donÕt know 
-No, the chances are about 70% and this will not change 
-No, the relationship between chances and coin boxes is completely unpredictable 
-Yes! It changes slowly over time 
 

If the silver container fills up, what will happen? 
-I donÕt know 
-I can start keeping my extra silver coins in the gold container 
-I have collected all of the silver coins that I will be allowed to keep 
-I lose all of my silver coins 
 

If the gold container fills up, what will happen? 
-I donÕt know 
-I can start keeping my extra gold coins in the silver container 
-I have collected all of the gold coins that I will be allowed to keep 
-I lose all of my gold coins 
 

Are silver and gold coins worth the same amount of money? 
-I donÕt know 
-Silver coins are more valuable than gold coins 
-Gold coins are more valuable than silver coins 
-Yes! They are both worth 25c 
 

Can some boxes contain both silver and gold coins at different times? 
-I donÕt know 
-No. Boxes contain either silver or gold coins, never both 
-Sometimes boxes will have both types of coins inside 
-Yes! Boxes often have both types of coins inside 
 
 

SCREEN 9  

Well done! You answered the questions correctly! 

Before you start the game, let's review. Your aim is to collect as much money as possible 
by finding coins. To do this, you will make choices between pairs of boxes which will 
bring you to another box that may contain a coin. Often one box will be better than 
another because it pays you more often. However, the goodness of the coin boxes will 



change slowly over time, so you need to stay on top of which coin boxes are currently 
good. 

Getting to the best coin boxes relies on your choice between the two boxes at the start of 
each turn. You have already learned how some choices are more likely to take you to 
certain coin boxes. This will not change over the game. 

You will need to put these parts together to do well at the game and win as much 
money as possible. You need to keep track of which are the best coin boxes as that 
changes slowly, and make good choices that you think are likely to bring you to 
them. 

Now we're going to play the real game where you can win money, which we will pay you 
as a bonus, in addition to your regular hit payment. 

Use the 'E'  and 'I'  keys to choose the left and right boxes. 

 

 

 

Miscellaneous Instructions 

 

Consumption test 

Free Coin Collection! 

For a brief time, you can collect coins by clicking on them using the mouse/trackpad. 
Once collected, coins will disappear from the screen and be placed in their containers, if 
they are not already full. 

You will have 4 seconds to collect as many coins as you like. Get ready! 

 

Withholding outcome information 



We will now no longer show you the results of your choices (i.e. whether or not you get a 
coin on each trial). Apart from that, nothing about the game has changed, and you should 
continue playing as before. 

 

  



Supplementary References 
 
 
Bellman,	
  R.	
  (1957).	
  Dynamic	
  Programming.	
  Princeton,	
  NJ:	
  Princeton	
  University	
  

Press.	
  
	
   	
  
Daw,	
  N.	
  D.,	
  Gershman,	
  S.	
  J.,	
  Seymour,	
  B.,	
  Dayan,	
  P.,	
  &	
  Dolan,	
  R.	
  J.	
  (2011).	
  Model-­‐Based	
  

Influences	
  on	
  Humans'	
  Choices	
  and	
  Striatal	
  Prediction	
  Errors.	
  Neuron,	
  69(6).	
  
	
   	
  
Gelman,	
  A.,	
  &	
  Rubin,	
  D.	
  (1992).	
  Inference	
  from	
  iterative	
  simulation	
  using	
  multiple	
  

sequences.	
  Statistical	
  Science,	
  7(4),	
  457-­‐472.	
  
	
   	
  
Ito,	
  M.,	
  &	
  Doya,	
  K.	
  (2009).	
  Validation	
  of	
  decision-­‐making	
  models	
  and	
  analysis	
  of	
  

decision	
  variables	
  in	
  the	
  rat	
  basal	
  ganglia.	
  J	
  Neurosci,	
  29(31),	
  9861-­‐9874.	
  
	
   	
  
Lau,	
  B.,	
  &	
  Glimcher,	
  P.	
  W.	
  (2005).	
  Dynamic	
  response-­‐by-­‐response	
  models	
  of	
  

matching	
  behavior	
  in	
  rhesus	
  monkeys.	
  J	
  Exp	
  Anal	
  Behav,	
  84(3),	
  555-­‐579.	
  
	
   	
  
Otto,	
  A.	
  R.,	
  Raio,	
  C.	
  M.,	
  Chiang,	
  A.,	
  Phelps,	
  E.	
  A.,	
  &	
  Daw,	
  N.	
  D.	
  (2013).	
  Working-­‐

memory	
  capacity	
  protects	
  model-­‐based	
  learning	
  from	
  stress.	
  Proc	
  Natl	
  Acad	
  
Sci	
  U	
  S	
  A,	
  110(52),	
  20941-­‐20946.	
  

	
   	
  
Peng,	
  J.	
  and	
  Williams,	
  R.	
  J.	
  (1996).	
  Incremental	
  multi-­‐step	
  Q-­‐	
  learning.	
  Machine	
  
Learning,	
  22,	
  283-­‐290.	
  
	
   	
  
Stan.	
  (2014).	
  Stan:	
  A	
  C++	
  Library	
  for	
  Probability	
  and	
  Sampling,	
  Version	
  2.5.	
  	
  

Retrieved	
  October	
  15,	
  2014	
  	
  
Sutton,	
  R.,	
  &	
  Barto,	
  A.	
  (1998).	
  Reinforcement	
  Learning:	
  an	
  Introduction.	
  Cambridge,	
  

Massachusetts:	
  MIT	
  Press.	
  
	
   	
  
 


