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A B S T R A C T

Learning about the expected value of choice alternatives associated with reward is critical for adaptive behavior.
Although human choice preferences are affected by the presentation frequency of reward-related alternatives,
this may not be captured by some dominant models of value learning, such as the delta rule. In this study, we
examined whether reward learning is driven more by learning the probability of reward provided by each
option, or how frequently each option has been rewarded, and assess how well models based on average reward
(e.g. the delta model) and models based on cumulative reward (e.g. the decay model) can account for choice
preferences. In a binary-outcome choice task, participants selected between pairs of options that had reward
probabilities of 0.65 (A) versus 0.35 (B) or 0.75 (C) versus 0.25 (D). Crucially, during training there were twice
the number of AB trials as CD trials, such that option A was associated with higher cumulative reward, while
option C gave higher average reward. Participants then decided between novel combinations of options (e.g.,
AC). Most participants preferred option A over C, a result predicted by the Decay model, but not the Delta model.
We also compared the Delta and Decay models to both more simplified as well as more complex models that
assumed additional mechanisms, such as representation of uncertainty. Overall, models that assume learning
about cumulative reward provided the best account of the data.

1. Introduction

How do we take into account the amount of experience we have
with choice alternatives when making decisions? For example, imagine
you are deciding whether to go to an old restaurant that you have
visited frequently, or a relatively new restaurant that you have visited
only a few times. Your choice could be based on the average quality of
each restaurant, for example, the food, service, and atmosphere.
Alternatively, your choice could be based on the cumulative number of
positive experiences you have had with each restaurant. Since you have
had much more experience with the old restaurant, this may then bias
you towards choosing it, even if the average quality of the new res-
taurant has been higher (cf. Bornstein & D'Agostino, 1992).

Such decision processes are typically studied in laboratory settings
using reinforcement learning tasks in which participants learn the re-
lationship between alternative actions and subsequent rewards through
experience. The expected value – an estimate of future reward – for
each alternative is learned through trial-and-error, and options with a
higher expected value are more likely to be chosen in the future. Most

prominent models of reinforcement learning assume that expected
value is based on the average reward provided by each option. The
Delta rule (Rescorla & Wagner, 1972; Widrow & Hoff, 1960; Williams,
1992), for example, is one of the most commonly used learning rules
across domains, including reward and value learning in decision-
making, category learning, and associative learning paradigms (e.g.
Busemeyer & Stout, 2002; Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006; Gluck & Bower, 1988; Jacobs, 1988; Rumelhart & McClelland,
1986; Sutton & Barto, 1981; 1998). This rule updates expected values
by learning about average reward probability, such that the frequency
with which each option is experienced will not affect its value.

However, previous work suggests that the way people learn an es-
timate of the expected value of an option may not be as simple as the
probability of that option yielding a reward. Estes (1976) manipulated
the frequency of choice options, and found that probability judgments
were heavily influenced by how frequently each option had been en-
countered. Accordingly, Estes suggested that people are more likely to
translate memories of rewarded events associated with each alternative
into probability judgments, rather than represent such probabilities

https://doi.org/10.1016/j.cognition.2019.104042
Received 7 November 2018; Received in revised form 4 August 2019; Accepted 6 August 2019

⁎ Corresponding author at: Department of Psychological & Brain Sciences, Texas A&M University, 4235 TAMU, 77843-4235, United States.
E-mail address: hilary.don@tamu.edu (H.J. Don).

Cognition 193 (2019) 104042

0010-0277/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2019.104042
https://doi.org/10.1016/j.cognition.2019.104042
mailto:hilary.don@tamu.edu
https://doi.org/10.1016/j.cognition.2019.104042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2019.104042&domain=pdf


directly (cf. Murty, FeldmanHall, Hunter, Phelps, & Davachi, 2016).
Typically, the same options that provide greater rewards on average are
also associated with the highest cumulative reward. This is because in
the majority of studies of choice behavior all options are presented with
the same frequency. However, outside of an experimental context,
choice options are generally not experienced or encountered in equal
frequency. For example, grocery stores might provide some items year-
round, but other items only seasonally, such that people will have much
more experience with the common items. Model-based predictions
about the way people behave in these situations may differ depending
on whether a given model assumes that people learn about average or
cumulative reward associated with each choice alternative.

Intriguingly, this issue has been overlooked by dominant learning
models which are used to characterize experience-based decision-
making. Learning rules are a key component of formal models of cog-
nition. They dictate how models acquire, update, and maintain in-
formation about the values of choice alternatives, the weights between
network connections, and the strengths of memories. The way in which
learning rules are formulated can therefore have substantial effects on
the types of information a model is able to learn, and thus what as-
sumptions cognitive theories explicitly or implicitly make about the
mechanisms underlying cognition. Despite their central importance to
models of choice, there has been little work to systematically compare
learning rules in their sensitivities to different types of information.
Thus, our aim for this study was to determine whether expected value is
driven by the average reward or cumulative reward yielded by choice
alternatives, by directly comparing learning rules that assume either
average or cumulative estimates of expected value. Specifically, we
compared these learning rules to human choice preferences when the
frequency and probability of reward provided by alternative options
differed.

We first designed a reinforcement learning task that differentiates
between learning expected value based on average reward and learning
expected value based on cumulative reward. Model performance was
then simulated ex ante on this task across a large range of parameter
values to verify the models make diverging predictions. We then col-
lected human data on the reinforcement learning task and fit each
model to the data to obtain best fitting parameter values and compare
model fits. The models were then simulated ex post using the best-fitting
parameter values to determine whether the models can reproduce the
behavioral effects of interest, thereby providing conditions for falsifia-
bility of the models in question (see Palminteri, Wyart, & Koechlin,
2017). Finally, we ran a cross-fitting procedure to assess model re-
covery.

1.1. Reinforcement learning task

To test learning rule model predictions, we used a reinforcement
learning task that dissociates reward frequency from reward prob-
ability. In this task, participants selected between two options on each
trial, and received either reward or no reward, based on fixed prob-
abilities tied to each option. On some trials, participants learned to
choose between option A, rewarded 65% of the time and option B,
rewarded 35% of the time. On other trials, participants learned to
choose between option C, rewarded 75% of the time, and option D,
rewarded 25% of the time. Critically, participants were given 100 AB
trials, but only 50 CD trials. This should create a situation where option
A is associated with the most cumulative reward, whereas option C has
provided the most reward on average. Upon test, participants were
presented with several different combinations of the choice options,
each presented 25 times. The key comparison occurs on CA trials, as
models based on average reward should predict more C choices (higher
average reward), while models based on cumulative reward should
predict more A choices (higher cumulative reward). Further details
about the task will be presented below.

2. Ex ante simulations

2.1. Basic models

To verify our predictions for models based on average and cumu-
lative reward, we first simulated the task with two models where ex-
pected value (EV) is based either exclusively on the average reward
provided by each option, or exclusively on the cumulative reward
provided by each option. For the basic average model, if rewards (r) are
coded as 1 when a reward is given and 0 when a reward is not given
then the cumulative reward value (CRVj) for each j option is computed
on each t trial as:

+ = +CRV t CRV t r t I( 1) ( ) ( )·j j j (1)

where Ij is simply an indicator value that is set to 1 if option j is selected
on trial t, and 0 otherwise. The number of times each j option has been
selected (Nj) is used as the denominator, and expected values (EV) are
simply the average reward values:
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+
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In the basic cumulative model, expected values for each option are
simply the cumulative reward values from Eq. (1).

The predicted probability that option j will be chosen on trial t,
P C t| ( )|j is calculated using a Softmax rule:
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where = c3 1(0 5)c , and c is a log inverse temperature para-
meter that determines how consistently the option with the higher
expected value is selected (Yechiam & Ert, 2007). When c =0 choices
are random, and as c increases the option with the highest expected
value is selected most often. Defining in this way allows it to take on a
very large range of values (0–242), and is equivalent to setting a prior
on beta with a truncated exponential distribution.1

2.2. Reinforcement learning models

Delta and Decay rule models also base expected value on average
and cumulative reward, respectively, but include recency parameters
that allow the models to better approximate human behavior. Our
original goal of the study was to compare Delta and Decay models
because the models are not overly flexible, which allows for strong
inference since each model can be excluded or falsified if participants
exhibit certain patterns of behavior that each model cannot predict ‘ex
ante’ (Busemeyer & Wang, 2000; Platt, 1964; Roberts & Pashler, 2000).
However, we also considered some more complex variants of these
models, which are presented below.

2.2.1. Delta rule model
The Delta rule (Rescorla & Wagner, 1972; Widrow & Hoff, 1960;

Williams, 1992) updates expected values based on prediction error, that
is, the difference between what was expected and what was received in
a given instance. Expected values will therefore approximate the

1 In the fits and simulations presented in this paper, EVs were scaled by
subtracting the minimum EV from each EV such that the difference among EVs
was preserved, but the values were scaled in a way that worked better with the
computer program we used (R), without producing “NA” from the exponential
function. The softmax rule evaluates the numerical distance between EVs to
determine action selection probability so shifting values in this way did not
affect the models’ predictions (Worthy, Maddox, & Markman, 2008). Ad-
ditionally, the maximum value entered into the exponential function for the
softmax rule was 700, as values greater than this lead to “NA” in most computer
programs, including R. Full analysis code is available at: https://osf.io/v57wf/.
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recency-weighted average reward associated with each option, such
that the frequency with which each option is experienced will not affect
its value. Expected values in the delta rule model are calculated as:

+ = +EV t EV t r t EV t I( 1) ( ) ·( ( ) ( ))·j j j j (4)

The update function on the delta rule means that expected values
are only updated for the chosen alternative on each trial. If participants
choose A for an AB pair, they update their information about A, but not
B. The portion of Eq. (1) in parentheses is known as the prediction
error, and it is modulated by the learning rate parameter (0 1).
Higher values of indicate greater weight to recent outcomes, while
lower values indicate less weight to recent outcomes. When =0 no
learning takes place and expected values remain at their starting points,
and when = 1 expected values are equal to the last outcome received
for each option. The probability of choosing each alternative was de-
termined by entering EVs into the Softmax rule in Eq. (3).

2.2.2. Decay rule model
The Decay rule (Erev & Roth, 1998; Yechiam & Busemeyer, 2005;

Yechiam & Ert, 2007) is a less prevalent learning rule than the Delta
rule, and updates expected values based on cumulative instances of
reward associated with each option. Rather than updating expected
values on the basis of prediction error, value estimates are dictated by
how often (in total) each option has yielded reward in the past. In turn,
options that have been encountered more frequently should be asso-
ciated with more reward overall, and should receive greater value. The
Decay rule assumes that outcomes are stored directly in memory, but
this memory trace decays over time. Specifically, on each t trial the EV
for each j option is updated according to:

+ = +EV t EV t A r t I( 1) ( )·(1 ) ( )·j j j (5)

where A is a decay parameter,2 and r t( ) is the reward given on each
trial. As in Eq. (1), Ij is an indicator variable that is set to 1 if option j
was selected on trial t, and 0 otherwise, such that EVs will increment by
the reward for the chosen option only, but all options will decay on
every trial. Again, the probability of choosing each alternative was
determined by the Softmax rule (Eq. (3)).

In summary, the key difference between the Delta and Decay rules is
that the Delta rule will learn the average reward provided by each op-
tion, modulated by a learning rate parameter, while the Decay rule will
learn a decaying representation of the cumulative reward associated
with each option.

2.3. Method

We simulated data sets across the parameter space by systematically
incrementing values of c, along with either or A for the Delta and
Decay models. or A varied from 0 to 1 in increments of 0.05, and c
varied from 0 to 5 in increments of 0.25. For each parameter combi-
nation, we performed 1000 simulations where each model learned the
training phase of the task. After the training phase, we then took each
model’s predicted probability of choosing C on the critical CA trials (Eq.
(3)), and these probabilities were averaged across the 1000 simulations
for each parameter combination.

2.4. Results & discussion

Averaged across c parameters, the average model predicted a
greater proportion of C choices on CA trials (mean p(C)= 0.78), while
the cumulative model predicted greater A choices (mean p(C)= 0.24).

Fig. 1 plots the average probability of selecting option C on CA trials for
each parameter combination for the Delta (a) and Decay (b) models.
Delta model predictions range from 0.5 to about 0.75, while Decay
model predictions range from about 0.15 to 0.55. Overall, the Delta
model generally predicts more C choices (mean p(C)= 0.60), while the
Decay model generally predicts more A choices (mean p(C)= 0.41).
Thus, this task is useful for evaluating whether human behavior is more
in line with model predictions that expected value is based on average
or cumulative reward, respectively. We therefore tested how well these
predictions align with human behavior.

3. Choice experiments

To summarize, the Delta rule model assumes that people learn
average reward or average reward probabilities, and that the frequency
with which each alternative has been encountered should not affect its
value. The Decay rule assumes that people learn a cumulative re-
presentation of reward associated with each option, and that options
that have been more frequently rewarded should hold higher value.

To test these predictions, we conducted three choice experiments,
which were all variants of the same basic task design. The critical

Fig. 1. The average probability of selecting C on CA trials across 1000 simu-
lations for each parameter combination from (a) the Delta model and (b) the
Decay model.

2 We used (1-A) as the decay parameter so that higher values indicate more
decay and lower values indicate less decay, such that they are more comparable
to the learning rate parameter in the Delta model. In both models higher values
indicate a greater reliance on recent outcomes.
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components of the task remained consistent across experiments so we
present them together for concision. We were most interested in choices
made on CA test trials. From the simulations above it is clear that the
models based on average reward predict more C choices, while models
based on cumulative reward predict more A choices. We evaluated
choices on these trials and performed fits of each model to the choice
data to evaluate which model best characterizes the observed human
behavior.

3.1. Method

3.1.1. Participants
One-hundred and thirty-three participants from Texas A&M University

(88 female, mean age=19.1, SD=1.16) participated in the experiment
for partial fulfillment of a course requirement. The Internal Review Board
approved the experiment, and participants gave informed consent. Sample
sizes for Experiments 1, 2, and 3 were 33, 50, and 50, respectively.
Experiment 1 was completed near the end of a term, with the goal of
running participants up until that point (see Witt, Donnellan, & Orlando,
2011, for subject pool effects as a function of time of semester). The
sample size of 50 for the last two experiments was determined semi-ar-
bitrarily, and as a value with enough power to conduct one-sample t-tests
for choice proportions on test trials against specific expected choice pro-
portions (detailed below). For the critical comparison of choice propor-
tions on CA trials, with 50 participants we had about 0.96 power to detect
an effect, assuming a moderate effect size of d=0.50.

3.1.2. Materials and procedure
Participants performed the experiment on PCs using Matlab soft-

ware with Psychtoolbox-2.54. Participants first completed several
questionnaires that are described in the Supplementary Materials. The
reward structure was identical to the task described in the introduction,
and is detailed in Table 1. Fig. 2 shows example trial sequences from the
different versions of the task. Participants were told that they would
make repeated choices on each trial and that they would either receive
a reward of one point or zero points on each trial. During the first 150
trials of the task participants made choices between options A versus B,
or C versus D. There were 100 AB trials, and 50 CD trials, with each trial
type randomly distributed over the 150 training trials. The reward
probabilities associated with options A-D were [0.65 0.35 0.75 0.25].
The option order was the same in Experiment 1 for all participants, but
counterbalanced in Experiment 2 and Experiment 3 because we realized
that keeping the options the same might bias participants’ choices.3 In
Experiments 2 and 3 AB and CD pairs were presented on either the left
or the right, counterbalanced across participants, and the location of
options within each pair was further counterbalanced such that their
order could be AB, BA, CD, or DC. For each participant, the option
locations were kept consistent throughout both training and test.

Upon selecting an option, a random number from 0 to 1 was drawn
from a uniform distribution in the background of the computer pro-
gram. If the number drawn was less than the probability of reward
associated with each option then participants received one point,
otherwise they received zero points.

After 150 training trials participants were told that they would now
make choices between different pairs of options. They then performed
100 additional trials with pairs CA, CB, AD, and BD. There were 25
trials of each type randomly distributed across test trials. In
Experiments 1 and 2, participants received feedback in the test phase as
well, but in Experiment 3 this phase was performed without feedback.

In Experiment 2 and 3, participants also completed a final 50-trial
phase where they could select from any of the four options. The results
of this phase, which are of no specific interest to the present study, are
presented in the Supplementary Material. Participants were not given
monetary bonuses in Experiment 1, and only told to earn as many
points as possible. In Experiment 2 and 3, participants were offered a
monetary bonus of $0.10 USD for each point they received in the 100
trial test phase and the final 50-trial four-choice phase.

3.1.3. Data analysis
Below we compare the proportion of each objectively optimal choice

for each trial type during the learning and test phases of the tasks. For AB
and CD trials we conduct one-sample t-tests against chance, 0.50, to
determine if, overall, participants learned that A and C were the best
alternatives within each pair. For the test phase we perform one sample t-
tests with the objective reward ratio between the two alternatives as the
comparison metric. Thus for CA trials we compare against: 0.75/
(0.75+0.65)=0.5357, and for CB, AD and BD trials against values of
0.6818, 0.7222, and 0.5833, respectively. We also report a comparison
for CA trials against a value of 0.50, as well as comparisons between each
experiment to evaluate whether the results were consistent. The reason
for using the objective reward ratio is to examine whether participants’
behavior differed from what would be expected from probability
matching if participants had accurate knowledge of the probability of
reward associated with each option. This is different than simply ex-
amining for departures from chance or random behavior by using a test-
metric of 0.5. Thus using both the reward ratios and 0.5 as test metrics
allows us to test two separate hypotheses: was behavior different than
predicted from accurate knowledge of reward probabilities for each op-
tion, and was behavior different than expected from chance?

We report the t and p-values from each test, as well as Bayes Factors
in favor of the alternative hypothesis (BF10), in this case that the ob-
served proportion of optimal choice selections differs from the value
expected based on the objective reward ratio between the two options.
Bayes Factors were computed in JASP (jasp-stats.org) using the default
priors. We consider a Bayes Factor of 3 or more to be analogous to a
critical threshold, although Bayes Factors can be interpreted con-
tinuously as the odds in favor of the alternative hypothesis
(Wagenmakers et al., 2018). Bayes Factors less than 1 indicate more
support for the null than the alternative hypothesis, and a Bayes Factor
less than 1/3 would suggest moderate support for the null hypothesis
(analogous to a BF10 of 3 in favor of the alternative hypothesis).

We also fit each model to participants’ learning and test data in-
dividually. We compared the model fits using the Bayesian Information
Criterion (BIC; Schwarz, 1978), and examined the degree to which the
Decay model fit the data better than the Delta model by computing:
BICDelta-Decay= BICDelta – BICDecay. This BIC difference can then be
transformed into a Bayes Factor representing the evidence that the
Decay rule is the better model: BF10-Decay= exp(BICDelta-Decay/2)
(Wagenmakers, 2007).

3.1.4. Data availability
Data and experiment and analysis code are available on the Open

Science Framework: https://osf.io/v57wf/.

Table 1
Task design.

Phase Number of trials Choice options (p(reward))

Training 100 A (0.65) vs. B (0.35)
50 C (0.75) vs. D (0.25)

Test 25 A (0.65) vs. C (0.75)
25 A (0.65) vs. D (0.25)
25 B (0.35) vs. C (0.75)
25 B (0.35) vs. D (0.25)

3 Specifically, in Experiment 1 options A and C were always presented on the
left on AB and CD trials, and option A was presented on the left during CA trials.
This may have biased participants toward selecting A on CA trials because ‘left’
had been the most rewarding response for both AB and CD trials during
training.
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3.2. Results

3.2.1. Training trials
Fig. 3 shows the proportion of optimal choices across training, divided

into six blocks of 25 trials for each experiment. Figures for all data col-
lapsed across experiments is shown in the Supplemental Material. A re-
peated measures analysis of variance (ANOVA) with block (1–6) and trial
type (AB vs. CD) as factors showed a significant linear effect of block, F
(1,132)=44.57, p < .001, p

2 =0.252, indicating learning across the
training phase. There was also a significant quadratic effect of block,
suggesting learning is reaching asymptote towards the end of training, F
(1,132)=23.19, p < .001, p

2 =0.149. However, there was no main ef-
fect of trial type, F(1,132)=0.002, p=.966, BF10=0.055, interaction
between the linear effect of block and trial type, F(1,132)=0.249,
p=.618, p

2 =0.002, or interaction between the quadratic effect of block
and trial type, F(1,132)=1.56, p=.213, p

2 =0.012. Overall, A and C
choices were both well above chance, A choices:M= 0.663, SD=0.195, t
(132)=9.62, p < .001, BF10 > 1000; C choices: M= 0.662, SD=
0.209, t(132)=8.93, p < .001, BF10 > 1000. There were no significant
differences in optimal choices between experiments on AB trials, F
(2,130)=2.42, p=.093, BF10=0.54, or CD trials, F(2,130)=2.96,
p=.056, BF10=0.88.

3.2.2. CA test trials
The critical CA test trials determine whether participants prefer the

option with higher average reward, or higher reward frequency. Fig. 4a
shows the average proportion of C choices on these trials. On average,
participants selected C less often than would be expected from the

objective reward ratio, M = 0.430, SD=0.289, t(132)=−4.22,
p < .001, BF10=347.4, and the median for C choices was 0.40. We also
conducted a one-sample t-test using a test value of 0.50. This provided
moderate evidence that the proportion of C choices was lower than
would be expected from chance, t(132)=−2.79, p=.006, BF10=3.96.
Fig. 3 plots choices on CA trials across training. A repeated measures
ANOVA with block (1–4) and feedback (with feedback vs. without
feedback) as factors showed no linear effect of block, F(1,131)=1.10,
p=.296, p

2 =0.008, and no interaction between feedback and the
linear effect of block, F(1,131)=0.60, p=.440, p

2 =0.005. Separate
ANOVAs for each feedback condition also showed no linear effect of
block in experiments with feedback at test, F(1,82)=0.049, p=.825,

p
2 =0.001 or without feedback at test, F(1,49)=1.37, p=.248,

p
2 =0.027. Plots of choice preferences across the test phase for each
experiment separately can be found in the Supplemental Material. Fig. 4b
plots of the distribution of C choices on CA trials for each experiment.
Visual inspection of these plots suggests some bimodality, with some
participants clearly preferring option C, but more showing a strong
preference toward option A. The plot for Experiment 3 indicates the
greatest extent of bimodality, possibly due to the lack of feedback during
the test phase in Experiment 3; a small subset of participants strongly
preferred option C, but most showed a bias toward option A.

3.2.3. Remaining test trials
On CB test trials, participants chose C significantly less than the

objective reward ratio of 0.6818, M = 0.519, SD=0.318, t
(1 3 2)=−5.93, p < .001, BF10 > 1000. The median value was 0.48.
Even though option C was 40% more likely to give a reward than option

Fig. 2. Example trial sequences of the training and test phase from (a) Experiment 1 (with feedback at test), and (b) Experiment 3 (without feedback at test).
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B, many participants did not show a strong preference for option C on
CB trials. For AD and BD trials, participants selected the better alter-
native in accordance with their objective reward ratios. The proportion
of A choices on AD trials did not differ from the reward ratio of 0.7222,
M = 0.681, SD=0.275, t(1 3 2)=−1.73, p= .086, BF10= 0.407.
Similarly, the proportion of B choices on BD trials did not differ from
the reward ratio of 0.5833,M= 0.569, SD=0.281, t(1 3 2)=−0.598,
p= .551, BF10= 0.115. Thus, when the most frequently presented
items were dominant within a pair, choice probabilities were similar to

the objective reward ratios, or probability matching, but when a less
frequently presented item was dominant within a pair, choice propor-
tions were more consistent with how frequently the item had been
presented.

4. Model comparisons

We first focus on comparing the fits of the Delta and Decay models
to the choice data. These are basic level models that are neither as

Fig. 3. Proportion of optimal choices for AB and CD trials across training and the four test trials in the test phase, split across blocks of 25 trials in (a) Experiment 1,
(b) Experiment 2, and (c) Experiment 3.
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simple as the average and cumulative models, nor as complex as the
additional models we will present below. As previously noted, our focus
was on comparing the Delta and Decay models as their limited flex-
ibility allows us to falsify models if participants’ behavior is qualita-
tively different than that predicted by the models (Roberts & Pashler,
2000). Next, we present the more complex models along with com-
parisons to the Decay model, as well as the simpler Delta model nested
with each more complex model, then we present a section comparing
all models together.

4.1. Delta vs. Decay models

To compare the models directly, we fit each model individually to
each subject’s training and test phase data by maximizing the likelihood
of each model’s next step ahead predictions. The Decay model ad-
vantage was taken as ΔBICDelta-Decay. Fig. 5a plots the average Decay
model advantage for each experiment. The average BIC difference was
22.57 which corresponds to a Bayes Factor of over 7.9×104 in favor of

the Decay model (Wagenmakers, 2007). 72.22% of participants were
best fit by the Decay model; a binomial test suggests this difference is
well above 50% expected by chance, p < .001, BF10 > 1000.

We also compared the Delta and Decay models to a random or null
model by computing McFadden’s pseudo R2 (McFadden, 1973). Both
models fit better, overall, than the random model. For the Delta rule
model pseudo R2 values for Experiment 1–3 were 0.142, 0.134, and
0.178. For the Decay rule model pseudo R2 values were 0.239, 0.195,
and 0.226. Thus the Decay model explained about 7% more of the
variance in behavior than the Delta model, although a great deal was
still left unexplained by either model. To illustrate the model fits on an
individual level, pseudo R2 was also calculated for each participant,
which are plotted in Fig. 5b.

4.2. Extended delta models

The results suggest that expected value is more likely to be based on
cumulative reward than average reward, in support of the Decay model

Fig. 4. C selections on CA test trials. (a) shows average proportion of C selections for each experiment. (b) shows the frequency distributions of C choices on CA test
trials where Experiments 1–3 are presented from left to right. Error bars represent standard errors of the mean. Dashed lines represent the objective reward ratio.
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predictions. However, it is possible that additional parameters may
allow the Delta model to account for biases towards options with higher
cumulative value. We will first compare these models to the nested
Delta and Decay models, and then make comparisons across all models.

4.2.1. Delta with decay
The decay model differs from the Delta model not only in learning

cumulative rewards, but also in the addition of a decay, or forgetting
rate parameter. A Delta model with an additional decay rate parameter
may therefore account for frequency effects in a similar way to the
Decay model. This is similar to previous models that have added decay
or forgetting parameters to delta-learning models (e.g. Collins & Frank,
2012; Worthy & Maddox, 2014). That is, as C is experienced and
therefore chosen less often than A, its value may decay to a greater
extent than A. We therefore fit the data to a delta model that included a
decay rate parameter on all choice options:

+ = +EV t EV t A r t EV t I( 1) ( )· ·( ( ) ( ))·j j j j (6)

The delta with decay model provided a significantly better fit to the
data than the delta model (ΔBICdelta-deltaDecay= 19.60, BF=1.8×
104), but did not fit better than the Decay model (ΔBICDecay-
deltaDecay=−2.96, BF=0.23).

4.2.2. Delta with± α model
There is evidence that learning rates for positive and negative pre-

diction errors may differ (Christakou et al., 2013; Lefebvre, Lebreton,
Meyniel, Bourgeois-Gironde, & Palminteri, 2017; St-Amand, Sheldon, &
Otto, 2018). Specifically, Lefebvre and colleagues found that their par-
ticipants exhibited an “optimism bias” where positive reward prediction
errors were weighted more heavily than negative reward prediction er-
rors. It is possible that including separate learning rate parameters for
positive and negative prediction errors could allow the Delta model to
predict a preference for A over C on the critical transfer trials if positive
prediction errors are weighted more than negative prediction errors, as
there would be a greater number of positive prediction errors for A:

If r(t) – EV(t) > 0,

+ = + +EV t EV t r t EV t I( 1) ( ) ·( ( ) ( ))·j j j j (7)

If r(t) – EV(t) < 0,

+ = +EV t EV t r t EV t I( 1) ( ) ·( ( ) ( ))·j j j j (8)

This model also provides a better fit of the data than the original
Delta model (ΔBICDelta-Delta±α=17.41, BF=6.0×103), but does not
provide a better fit than the Decay model (ΔBICDecay-Delta±α=−5.16,
BF=0.08).

4.2.3. Delta with uncertainty model
An alternative explanation for frequency effects here is that un-

certainty about the less frequently experienced option C drives the
preference for A. In other words, the greater uncertainty for C makes
option A more appealing. Several studies have shown that people tend
to be averse to ambiguous options (e.g., Ellsberg, 1961; Curley, Yates, &
Abrams, 1986). We therefore also fit Delta and Decay models that in-
corporate uncertainty. Because our tasks involved binary outcomes,
uncertainty associated with option j, Uj, was represented as the variance
computed from the beta distribution.

The first uncertainty model calculated expected values using the
delta rule from Eq. (4), presented above. The alpha (αj) and beta (βj)
values from the beta distribution for each j option were simply the
number of times each option was associated with either a reward (αj) or
non-reward (βj). Alpha and beta values were initialized at 1 and then
updated for the chosen option i following each trial according to:

If r(t)= 1,

+ = +t t( 1) ( ) 1i i (9)

If r(t)= 0,

+ = +t t( 1) ( ) 1i i (10)

Uncertainty (Uj) was then computed as:

=
+ + +

U
·

( ) ·( 1)j
j j

j j j j
2 (11)

The Q-value for each option (QVj) was a combination of its expected
value and the square root of its uncertainty, or variance from the beta
distribution:

= +QV EV w U·i i U j (12)

where wU is the weight parameter for the uncertainty associated with
each option. We allowed this parameter to range from −5 to 5. Positive
values indicate a preference for options with greater uncertainty, and
negative values predict a preference for options with less uncertainty
(e.g. Payzan-LeNestour & Bossaerts, 2011). We predicted that best-fit-
ting uncertainty weight parameters would be negative for most parti-
cipants; indicating that most participants viewed uncertainty nega-
tively. Finally, Q-values were entered into a Softmax rule similar to Eq.

Fig. 5. Model comparisons including (a) average BIC advantage for the Decay
model (BICDelta-Decay), where a higher score indicates a greater advantage for
the Decay model, and error bars represent standard errors of the mean, and (b)
McFadden’s pseudo R2 for each participant for the Delta and Decay models,
where higher scores indicate greater support for each model over the null
model.
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(3) above to determine action selection probabilities for each alter-
native.

=P C t e
e

| ( )|j
QV t

N j QV t

· ( )

1
( ) · ( )

j

j (13)

This uncertainty model provides a better fit of the data than the original
delta model (ΔBICDelta-DeltaUncertainty=16.46, BF=3.7×103), but did not
fit better than the Decay model (ΔBICDecay-DeltaUncertainty=−6.11,
BF=0.05).

4.2.4. Decay with uncertainty model
We also fit a Decay model with the same uncertainty mechanisms as

the Delta model with uncertainty presented above. Expected values
were computed from Eq. (5) above, Eqs. (9)–(11) were used to compute
uncertainty for each option, and Eqs. (12) and (13) were used to de-
termine action selection probability for each alternative. This model fit
the data fairly well, but did not clearly improve the fit compared to the
Decay model (ΔBICDecay-DecayUncertainty= 0.22, BF=1.11).

4.3. Comparison of all models

For each of the original and extended models, we report several
metrics to compare model fits and predictions. Table 2 shows a com-
parison of BIC, as well as the best fitting parameters for each model. As
a comparison, Table 2 also presents corrected Akaike Information Cri-
teria (AICc; Akaike, 1974; Burnham & Anderson, 2002), which tends to
penalize additional parameters less heavily than BIC.

4.3.1. Model fits
Generally, the models based on cumulative reward provided a better

fit of the data than the models based on average reward, and the addi-
tional parameters in the extended models improved the fit compared to
the nested Delta model. Overall, the Decay model and Decay with un-
certainty model provided the best fit of the data, followed by the ex-
tended Delta models. AICcs generally showed the same pattern of results,
with the exception that the Delta with decay model fit the data just as
well as the Decay model, and the Decay with uncertainty model provided
a small improvement in model fit (ΔAICcDecay-DecayUncertainty= 3.4). For
illustrative purposes, Fig. 6 shows mean EVs for each option across
training for each model. The cumulative models give higher values to
option A than option C by the end of training. The Delta model gives
higher value to option C than option A, and this preference in value for C
relative to A is reduced, but not reversed, in the extended Delta models.

4.3.2. Trial-level confusion matrices
Fig. 7 presents trial-level confusion matrices for each model, collapsed

across experiments. These matrices depict the actual choices of partici-
pants on CA trials against each model’s choice predictions on each trial,
based on their best fitting parameters. That is, for each participant we
derived the models’ predictions for each presented option on each trial,
based on the sequence of options and rewards that participant received.
Model choice was determined probabilistically using the model probability
for the participant’s chosen option on that trial, calculated by the Softmax
rule. If a participant chose option C on a particular trial, and the model
also predicted C choice, then we would add a count to the Actual C/
Predicted C cell. However, if the participant chose option C but the model
predicted A, then we would add a count to the Actual C/Predicted A cell.
This can be used to determine the percentage of accurate choices for each
model. Considering the basic and simple models, the models based on
cumulative reward tended to have more accurate predictions than the
models based on average reward. Overall, including additional parameters
to the Delta model slightly improved accuracy in choice predictions (0.56
for the Delta model compared to 0.57, 0.60 and 0.60 for Delta with un-
certainty, Delta with decay, and Delta with±α models, respectively).
Including an uncertainty weight parameter to the Decay model did not
increase accuracy above that of the original Decay model.

4.3.3. Best-fitting parameters
The best-fitting decay parameter value for the Delta with decay

model was 0.87, which is higher than the Decay models’ best-fitting
value of 0.19. This suggests that the Delta model can provide a better fit
for the data if there is a high rate of forgetting, but a high rate of for-
getting is less necessary if expected values are based on cumulative re-
ward. For the Delta±α model, the best-fitting parameter value for α+
was larger than that for α−. This is consistent with the findings of
Lefebvre et al. (2017), and indicates that allowing the delta model to give
more weight to positive prediction errors can bias it towards choosing A
more often. The Delta with uncertainty model has an average negative
uncertainty weight, which equates to a preference for options with less
uncertainty. This suggests that the addition of an uncertainty weight
parameter may allow the Delta model to account for more A choices (see
Fig. 7c and g). Indeed, the best-fitting uncertainty weight parameter was
positively correlated with the proportion of C choice on CA trials,
r=0.348, p < .001. The Decay with uncertainty model’s average un-
certainty weight is near zero, such that it won’t necessarily favor more
certain choices. This is a result of some participants being best fit by a
positive uncertainty weight, and some by a negative weight. It is possible
that allowing uncertainty to be positively or negatively weighted adds
flexibility to the model in either direction, by also allowing more C
choices than the basic Decay model (Fig. 7d and h). However, for the
Decay with uncertainty model, uncertainty weights were not correlated
with choice preference, r=0.017, p=.847. The addition of an un-
certainty parameter likely does not improve the model fit as the Decay
model naturally prefers the more frequently presented options.

5. Ex post simulations

As an additional test, we simulated the models using their best-fit-
ting parameter values to determine their generative performance – how
well they can reproduce the choice effects shown in the human choice
data (Palminteri et al., 2017). So far, the cumulative models and ex-
tended delta models provide the best fit to the data, while the basic
average and delta models provide the poorest fit. Ex post simulations
are a different test for the models because they evaluate whether the
models can reproduce the same pattern of data observed by participants
from the best-fitting parameter estimates. Model fit comparisons using
metrics such as BIC may allow more complex and flexible models to fit
idiosyncratic patterns in the data. The added flexibility of more com-
plex models may cause them to overfit the data, and impair their ability
to reproduce the data through simulations as well as their ability to

Table 2
Model comparisons including average BIC, AICc, and best fitting parameter
values.

Best fitting parameters

Model type Model BIC AICc c α A wU

Basic Basic average 310.51 307.09 0.90
Basic cumulative 299.06 295.64 0.12

Simple Delta 304.75 298.00 1.40 0.37
Decay 282.18 275.44 0.44 0.19

Extended Delta with decay 285.15 275.19 2.60 0.25 0.87
Delta with±α 287.34 277.38 1.70 α+ =

0.31
α− =
0.24

Delta with
uncertainty

288.29 278.34 1.10 0.42 −1.13

Decay with
uncertainty

281.97 272.01 0.48 0.25 −0.01

H.J. Don, et al. Cognition 193 (2019) 104042

9



generalize to novel settings (Ahn, Busemeyer, Wagenmakers, & Stout,
2008; Busemeyer & Wang, 2000). For each model, we used the best-
fitting parameters for each participant when fit across the entire ex-
periment (post-hoc simulations), and fit to the training phase only (a
priori simulations). We were particularly interested in whether the
models could reproduce performance in both the training phase and on
CA trials in the test phase.

5.1. Post-hoc simulations

We ran 5000 simulations for each experiment, which each sampled
one participant’s best-fitting parameters for each model, fit to the entire

experiment, with replacement. The predicted probability of choosing
the optimal choice on each trial for each trial type was computed for
each model and averaged across all 5000 simulations. These predicted
probabilities of selecting the optimal choice on each trial were then
compared to the observed proportion of optimal choices across parti-
cipants by evaluating the root-mean-square error between predicted
and observed proportions of optimal choices (RMSE; see Table 3). This
method is similar to the generalization criterion method (Busemeyer &
Wang, 2000), although the a priori simulations presented below are
closer to this method because it involved testing whether best-fitting
parameter estimates from a training phase can generalize by predicting
behavior in a subsequent test phase. We also ran a cross-fitting

Fig. 6. Mean EVs for each option across the training phase when each model is fit to the choice data.
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procedure using these simulations to assess the capacity to recover the
correct model (see Supplemental Material).

Fig. 8 shows the average model predictions for the proportion of
optimal choices for AB, CD and CA trials, against participants’ actual
optimal choices. Figures for all training trials split by experiment are
presented in the Supplemental Material. Comparing the two models of
primary interest, both the Delta and Decay models provide comparable
RMSEs on training trials on average, but the Decay model better ap-
proximates CA trials at test (Fig. 8c), and showed less overall error
considering all trial types. On CA trials specifically, the Decay with
uncertainty model provides the least error in predictions, followed by
the Decay model, and the Delta models with additional parameters.

However, the extended Delta models do not predict a strong choice bias
towards A on CA trials.

5.2. A priori simulations

The a priori simulations sampled the best-fitting parameters when the
models were fit to the training phase only, based on the generalization
criterion method (Ahn et al., 2008; Busemeyer & Wang, 2000). These
best-fitting parameters were then used to generate predictions for the
entire data set, including the test phase, which is a stricter test of the
models’ performance. This method can also indicate whether more
complex models over-fit the data, which would be evident if the model

Fig. 7. Trial-level confusions matrices for each model. Rows show the actual number of C and A choices made by participants on CA trials in all experiments, and
columns show the number of predicted C and A choices made by the model with the best-fitting parameters for each participant. Grey-shaded cells indicate accurate
predictions, and the percentage of accurate trial predictions is reported in the bottom right hand corner of each matrix.
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can predict the data to which it has been fit, but not the data to which it
has not been fit (Farrell & Lewandowsky, 2018). We again ran 5000 si-
mulations of each model, randomly sampling with replacement from
participants’ best-fitting parameters to the training phase. RMSE for each
model is shown in Table 4, and average model choice predictions across
the 5000 simulations are shown in Fig. 9. See the Supplemental Material
for figures for all training trials split by experiment.

The results followed a similar pattern to the post-hoc predictions.
Although the Delta model made slightly better predictions than the Decay
model on training trials, the Decay model again made better predictions
on CA trials (Fig. 9c), and less overall error than the Delta model. On CA
trials, the Decay with uncertainty model again showed the least prediction
error, as well as the Decay model. The Delta models with additional
parameters performed better than the basic Delta model on the test trials.
However, while the Delta with decay and Delta with±α models can
predict a slight bias towards A when fit to the data (see Fig. 7e and f), they
tend to predict choice close to chance in ex post simulations. The Delta
with uncertainty model predicted C choices slightly above chance in the a
priori simulations. The models based on cumulative reward better predict
choice preferences on these trials. Thus, in these simulations, the Decay
model with fewer parameters performed just as well as the more complex
models on the training trials to which the models were fit, and showed less
error on tests trials to which the models were not fit.

6. Model recovery

We used a cross-fitting procedure similar to that reported by
Wagenmakers, Ratcliff, Gomez, and Iverson (2004) to assess the

Table 3
RMSE from post-hoc simulations for each model and trial type.

Trial type

Model AB CD AC BC AD BD Average

Basic average 0.081 0.086 0.192 0.236 0.096 0.098 0.131
Basic cumulative 0.085 0.116 0.115 0.285 0.154 0.095 0.142

Delta 0.088 0.071 0.296 0.218 0.092 0.117 0.147
Decay 0.074 0.083 0.093 0.147 0.109 0.097 0.101

Delta with±α 0.106 0.079 0.095 0.152 0.103 0.095 0.105
Delta with decay 0.113 0.104 0.098 0.126 0.120 0.108 0.111

Delta with uncertainty 0.115 0.089 0.109 0.140 0.100 0.090 0.107
Decay with uncertainty 0.081 0.078 0.076 0.129 0.087 0.084 0.089

Fig. 8. Model choice predictions from post-hoc simulations against participants’ actual choices shown by the solid black lines on (a) AB trials, (b) CD trials, and (c) CA
trials.
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capacity to recover the correct model. This involves simulating data
from each model, and then fitting each model to the simulated data.
Ideally, the model that generated the data will provide the best fit to the
data; however, some models may be better able to mimic data produced
by other models. We used both a data-uninformed cross-fitting

procedure, which simulates data across the entire parameter space
(reported below), as well as a data-informed cross-fitting procedure,
which simulates data with parameters sampled from participants best-
fitting parameter values (reported in the Supplemental Material). We
focus on the data-uninformed version here, as it may be more

Table 4
RMSE from a priori simulations for each model and trial type.

Trial type

Model AB CD AC BC AD BD Average (training) Average (test)

Basic average 0.077 0.107 0.213 0.271 0.102 0.095 0.092 0.170
Basic cumulative 0.086 0.117 0.116 0.278 0.154 0.099 0.102 0.162

Delta 0.072 0.069 0.332 0.254 0.087 0.117 0.071 0.198
Decay 0.073 0.082 0.086 0.152 0.104 0.094 0.078 0.109

Delta with±α 0.081 0.069 0.106 0.192 0.081 0.095 0.075 0.119
Delta with decay 0.083 0.079 0.099 0.176 0.095 0.103 0.081 0.118

Delta with uncertainty 0.080 0.071 0.131 0.210 0.085 0.100 0.076 0.132
Decay with uncertainty 0.087 0.083 0.081 0.123 0.096 0.090 0.085 0.098

Fig. 9. Model choice predictions from a priori simulations against participants’ actual choices shown by the solid black lines on (a) AB trials, (b) CD trials, and (c) CA trials.
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appropriate when comparing nested models (see Wagenmakers et al.,
2004). In this study, we are comparing several models that are func-
tionally similar. For example, we have several models based on average
reward, and several based on cumulative reward. In this case, models
may generate very similar patterns of data, particularly when using
parameters that are fit to a particular pattern of data. It may therefore
be difficult to distinguish models of the same type using this procedure,
and as such, the results should be interpreted with caution.

In the data-uninformed cross-fitting procedure, we simulated 1000
data sets for each model for each experiment, and then fit each of the
models to the simulated data and calculated BIC. Table 5 presents a
confusion matrix that shows the proportion of simulated data sets that
were best fit by each model across all three experiments, according to
BIC. The only cases where a model did not provide the best fit of the
data it generated were the Delta with decay model, which was better fit
by the Decay model, and the Delta with±α model, which was better fit
by the Delta model. In both of these instances, the more complex model
was better fit by a simpler model nested within it. This suggests that
these models are generating similar data to their nested model, and that
BIC is penalizing the additional complexity of the extended models.

When all possible models were considered, the Decay model provided
the best fit for 83% of the data generated by the Decay model, while the
Delta model provided the best fit for 33% of data generated by the Delta
model. The lower proportion of data sets recovered by the Delta model is
likely because there are more models based on average reward than
cumulative reward, such that there is greater opportunity for the simu-
lated Delta model data to be well fit by other models of the same type. To
directly compare Delta and Decay models, we compared the fits of the
Delta and Decay models, ignoring fits of other models, to data simulated
by Delta and Decay models. The Delta model provided the best fit for
75% of the data generated by the Delta model, and the Decay model
provided the best fit for 97% of the data generated by the Decay model.
This suggests that neither model mimics the other model particularly
well, and supports a main assertion of our paper that the Delta and Decay
models predict fundamentally distinct behavior. However, the Decay
model may be slightly more flexible than the Delta model when com-
paring these models directly with data-uninformed cross-fitting.

Because the Delta and Decay models are non-nested models of a
different type, we also compared these models using the data-informed
cross-fitting procedure where the parameters used to simulate the data
are sampled from the best-fitting parameters from participants in this
task. In this case, the Delta model provided the best fit for 86% of the
data generated by the Delta model, and the Decay model provided the
best fit for 85% of the data generated by the Decay model (see
Supplemental Material). The models of primary interest therefore show
similar levels of model recovery when using the best-fitting parameters.

These proportions of data sets best fit by the data-generating model are
similar to a previous paper from our lab that used the same cross-fitting
method (Worthy, Otto, & Maddox, 2012).

Table 5 also shows the mean proportion of times each model pro-
vided the best fit to data that were generated by other models. The Delta
and Decay models again do not appear to be overly flexible, providing
the best fit to an average of only 8% and 9% of data sets produced by
other models, respectively. We also calculated the mean proportion of
data sets generated by models based on average reward that were best fit
by each model, and the proportion of data sets generated by models
based on cumulative reward that were best fit by each model. This allows
us to further examine model flexibility by comparing how well models
based on average reward could fit data generated by models based on
cumulative reward, and vice versa. If the models are overly flexible, they
will be able to provide a good fit to the data that are not produced by the
same kind of model. Each model provided a better fit for data generated
by the same type of model than a different type of model.

7. General discussion

This study tested the influence of reward frequency and average re-
ward probability on choice in a reinforcement-learning task, comparing
the predictions of learning rules based on average reward, and learning
rules based on cumulative reward to test the underlying assumptions they
make. We demonstrated that these models make divergent predictions
about the value of alternative options when those options are presented
with different frequency. Learning rules based on average reward, in-
cluding the Delta rule, give greater value to options with a higher prob-
ability of reward, while learning rules based on cumulative reward, in-
cluding the Decay rule, give greater value to options that have yielded
more rewards overall. In our experiments, the critical test between these
models was whether participants preferred option A, the more frequently
rewarded option, or C, the option with the highest reward probability
during the test phase. Most participants preferred option A on these trials,
in support of the cumulative value models’ predictions. The Decay model
provided a better fit to the data than the Delta model, and was also able to
reproduce this choice preference in ex post simulations. The results suggest
that participants are more likely to base their decisions on how often each
option had been rewarded, than on a learned estimate of the probability of
receiving reward. In other words, the sensitivity to option frequency in-
dicates that expected values of choice options are updated based on cu-
mulative reward. This is in line with theories that suggest people do not
learn reward probabilities directly, but instead store instances of reward
associated with each option in memory and then translate these into
choice probabilities that guide their behavior (Estes, 1976; Gonzalez &
Dutt, 2011; Stewart, Chater, & Brown, 2006).

Table 5
Proportion of model-generated data sets best fit by each of the models.

Fit model

Simulated model Average Cumulative Delta Decay Delta with decay Delta with±α Delta with uncertainty Decay with uncertainty

Average 0.78 0.05 0.02 0.02 0.01 0.06 0.05 0.01
Cumulative 0.00 0.86 0.00 0.05 0.00 0.05 0.01 0.02
Delta 0.18 0.03 0.33 0.05 0.26 0.10 0.05 0.01
Decay 0.05 0.08 0.00 0.83 0.01 0.00 0.00 0.02

Delta with decay 0.21 0.10 0.05 0.36 0.26 0.01 0.01 0.01
Delta with±α 0.13 0.04 0.43 0.01 0.02 0.34 0.04 0.00

Delta with uncertainty 0.07 0.14 0.04 0.02 0.00 0.02 0.65 0.05
Decay with uncertainty 0.04 0.14 0.00 0.09 0.00 0.01 0.05 0.67

Fit to generative data 0.78 0.86 0.33 0.83 0.26 0.34 0.65 0.67
Fit to other data 0.10 0.08 0.08 0.09 0.04 0.04 0.03 0.02
Fit to average data 0.27 0.07 0.17 0.09 0.11 0.11 0.16 0.02
Fit to cumulative data 0.03 0.36 0.00 0.32 0.00 0.02 0.02 0.24

Note: The highest proportion of best-fit data sets for each simulated model is shown in bold.
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The results are compelling as they reveal a clear influence of the
amount of experience on choice option value, which is not predicted by
one of the most popular learning rules. Delta-based models have also failed
to predict other choice effects based on frequency differences. For ex-
ample, the Rescorla-Wagner model cannot predict the choice preference
for a rare outcome in the inverse base-rate effect (Markman, 1989). Delta-
based learning is commonly used to model learning of action values from
experience in diverse fields such as psychology (Otto & Love, 2010),
computer science and neuroscience (e.g., McClure, Berns, & Montague,
2003). Beyond its ability to account for learning behavior, the Delta rule
has continued to grow in popularity due to its ability to explain aspects of
how dopaminergic brain regions encode prediction errors (Schultz &
Dickinson, 2000; McClure et al., 2003; Pessiglione, Seymour, Flandin,
Dolan, & Frith, 2006; Samanez-Larkin, Worthy, Mata, McClure, & Knutson,
2014). Given the prevalence of this model—and the assumptions it makes
about how value learning unfolds—it is important to validate that the
Delta learning model does indeed provide the best account of learning, as
operationalized by choice behavior or with neural activity.

Adapting the Delta model to include additional parameters can
allow it to better fit human behavior in our experiments. The addition
of a decay parameter, which reduces the value of all options on every
trial, allows the model to predict more A choices than the basic Delta
model (see Collins & Frank, 2012). Including separate learning rates for
positive and negative prediction errors also has a similar effect. The
improvement in fit for models based on average reward with additional
parameters means that the results cannot provide exclusive evidence for
cumulative reward learning. Nevertheless, the results of these more
complex models should be interpreted with caution. Additional para-
meters increase model flexibility; although the three-parameter models
may provide improved fits to the data presented here, they are also
more likely to be able to fit many other patterns of data than the two-
parameter models (Roberts & Pashler, 2000). The Decay model can
account for the data just as well, without the need for additional as-
sumptions. In addition, these extended models tend not to predict a
preference for A in ex post simulations, especially when the models are
only fit to the training data. The models based on cumulative reward
better predict choices on CA trials in these simulations.

An alternative explanation for the results is that the preference for A is
simply an example of ambiguity aversion. Given C is experienced less often
than A, its associated outcomes may be more uncertain. The uncertainty
models used here reduce uncertainty the more frequently an option is
chosen, and options with less uncertainty are valued higher when the un-
certainty weight is negative. This mechanism differs from the decay model
mechanism of reducing value as options are chosen less frequently. The
Delta with uncertainty model provided a reasonably good fit to the data
with a negative uncertainty weight. Within this data set, it is difficult to
tease apart the uncertainty model’s prediction that choosing an option more
frequently reduces its uncertainty and the Decay model’s prediction that
value accumulates for options more frequently chosen. It is possible that
both processes contribute, or that there are individual differences in whe-
ther people make choices based on accumulated value or reduced un-
certainty. Uncertainty may play some role, for example, on CB trials; C is the
clearly more valuable option, yet it is chosen less often than expected from
the reward ratio. Future research will need to design tasks in order to more
closely examine the influence of reward accumulation versus aversion to
uncertainty. The Decay model and the Delta model with uncertainty could
be used to identify tasks or paradigms where reward accumulation and
aversion to uncertainty can be more directly dissociated.

Bayesian versions of the Delta rule model have recently been de-
veloped to account for uncertainty in addition to expected value by
using a Kalman filter (Gershman, 2015). In the present work we simply
used the variance of the beta distribution as our measure of uncertainty,
but there are other potential metrics for representing uncertainty that
could be tested in future work. It’s possible that an improved metric for
representing uncertainty might improve the Delta with uncertainty’s
models ability to account for the pattern of data we observed here.

Additionally, some Bayesian reinforcement-learning models use un-
certainty to replace the learning rate with the Kalman filter gain. This
allows for more learning about less certain options. An interesting aim
for future work might be to develop a Bayesian variant of the Decay
model where something like the Kalman gain is used in the place of a
decay parameter that is constant across trials.

Although our results support the Decay model there is still an ex-
tensive body of work that supports predictions from the Delta model
(Rangel, Camerer, & Montague, 2008). A major finding is that prediction
errors from the Delta model are correlated with activation of the ventral
striatum (e.g. Hare et al., 2008; McClure et al., 2003). Additional work
can be undertaken to identify whether neural activation in reinforce-
ment-learning tasks is better characterized by Decay rule versus Delta
rule prediction errors and expected values. This could potentially be
addressed with extant data sets, applying model-based fMRI using each
model. In light of the present findings, it is possible that many results
previously found to support the Delta rule could also be accommodated
by versions of a Decay rule. For example, we have found that mean-
centered reward prediction errors from the Delta and Decay models are
strongly correlated with each other. Thus, evidence for neural activity
associated with reward prediction errors may not provide exclusive
support for the Delta model, but instead reflects neural activity predicted
by a variety of models. However, it is important to keep in mind that
both models may have aspects that do not align with aspects of neuro-
biology or cognition (e.g. Steingroever, Wetzels, & Wagenmakers, 2014).

The Decay model may also need to be modified to be more gen-
eralizable. A more general version of the Decay model might cumula-
tively track the number of positive versus negative prediction errors,
and would assume that participants make choices based on a recollec-
tion of positive versus negative outcomes associated with each option.
Such a model would account for the frequency effects we observed
here, and also account for the strong neural responses observed for
prediction errors (e.g. Hare et al., 2008;). The Decay model presented
here may also fail to account for reversal learning without additional
assumptions added to the model (e.g. Boorman, Rajendran, O’Reilly, &
Behrens, 2016), which should be addressed in future work.

A major point of Estes (1976) paper is that “probability learning is in
a sense a misnomer” or that people do not directly learn reward prob-
abilities (p.51). We found that people show a preference for options that
have been more frequently rewarded than options with higher prob-
ability of reward. Thus, the current study provides evidence that people
place greater value on cumulative instances of reward than on the
probability of reward associated with different choice options. We fur-
ther demonstrate that this is inconsistent with the basic Delta rule model,
which tacitly assumes probability learning, and is instead more con-
sistent with the predictions of the Decay model. A more complete theory
to what has been outlined by the Decay model might posit that it is
salience in memory, based on reward frequency, or any other factor, that
drives choice. Outcomes that are more frequent are more memorable, but
there could be other factors that influence the strength of associative
memory between options available in the environment and positive
outcomes associated with those options. Future research should also
consider whether these results extend to variations in the amount of
reward provided by each cue, rather than frequency. For example,
whether there would be a preference for options that were associated
with a higher amount of reward, but a lower probability of receiving that
reward, when options are presented in equal frequency. Additionally,
preferences for more frequently encountered options may also extend to
other forms of learning, such as learning about causation. It will be ne-
cessary to replicate and extend this work, and further test the key pre-
dictions made about learning and behavior by different formal models.
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