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The now-classic goal-gradient hypothesis posits that organisms increase effort expenditure as a function
of their proximity to a goal. Despite nearly a century having passed since its original formulation, goal-
gradient-like behavior in human cognitive performance remains poorly understood: Are we more willing
to engage in costly cognitive processing when we are near, versus far, from a goal state? Moreover, the com-
putational mechanisms underpinning these potential goal-gradient effects—for example, whether goal prox-
imity affects fidelity of stimulus encoding, response caution, or other identifiable mechanisms governing
speed and accuracy—are unclear. Here, in two experiments, we examine the effect of goal proximity, oper-
ationalized as progress toward the completion of a rewarded task block, upon task performance in an atten-
tionally demanding oddball task. Supporting the goal-gradient hypothesis, we found that participants
responded more quickly, but not less accurately, when rewards were proximal than when they were distal.
Critically, this effect was only observed when participants were given information about goal proximity.
Using hierarchical drift diffusion modeling, we found that these apparent goal-gradient performance effects
were best explained by a collapsing boundmodel, in which proximity to a goal reduced response caution and
increased information processing. Taken together, these results suggest that goal gradients could help
explain the oft-observed fluctuations in engagement of cognitively effortful processing, extending the
scope of the goal-gradient hypothesis to the domain of cognitive tasks.

Public Significance Statement
It is well known that humans and animals alike tend to work harder as they near a goal. Whether it be a
hungry rat moving closer to a food reward or a runner sprinting the final kilometer of a race, organisms
appear to intensify their effort as a function of their proximity to a goal. But does the same principle
apply in purely mental tasks—for example, when writing an exam, or doing one’s taxes? And if so,
how does behavior change? In these studies, we examine whether proximity to a goal affects a person’s
willingness to exert mental effort in a simple, but cognitively demanding task. Consistent with the
established goal-gradient hypothesis, we find that participants intensified their level of cognitive
effort—as indexed by their response speed and ability to correctly respond—closer to a goal (vs. further
away). Using computational modeling, we found that while participants processed information
more efficiently near a goal, they were also less cautious in their decision making. Taken together,
our results extend past findings about the effects of goal proximity on effort to the domain of purely
cognitive tasks.
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Many goals in daily life require the sustained investment of cog-
nitive effort to accomplish (e.g., working an 8-hr shift, filing one’s
taxes, or writing a lengthy research article). However, ample evidence
suggests that people find it difficult to exert sustained cognitive effort
over long periods of time (Inzlicht et al., 2014; Kurzban, 2016; Lin et
al., 2020; Massar et al., 2016; Shenhav et al., 2017; Umemoto et al.,
2019; Wiehler et al., 2022) and that, all else being equal, people tend
to avoid engagement in cognitively demanding behaviors (Hull, 1943;
Kool et al., 2010; Shenhav et al., 2017; Vogel et al., 2020; Westbrook
et al., 2013).
Yet, while evidence suggests that the sensation of effort accrues

over sustained exertion (Ackerman, 2011; Francis et al., 2018;
Lorist et al., 2000; Wiehler et al., 2022), recent and classical work
highlights the human and animal tendency to increase effort exertion
near a goal. This idea was first formalized by Hull’s (1932) goal-
gradient hypothesis, which posits that organisms increase (physical)
effort expenditure as their distance to a goal decreases. Supporting
this idea, Brown (1948) observed that the force (i.e., vigor) with
which rats ran down a straight alley was proportional to their prox-
imity to a reward, such that the animals exerted more force near a
reward versus further away. Extending this idea to human behavior,
swimmers and runners “sprint to finish” in the final distances of a
race (McGibbon et al., 2018; Tucker et al., 2006), students study
more at the end of the semester than the middle (Brahm et al.,
2017), and laboratory participants take fewer breaks near the end
of a long experiment (Katzir et al., 2020).
However, despite nearly a century having passed since the goal-

gradient hypothesis was first postulated—which was originally con-
cerned with physical (i.e., motor) effort—little work has examined
potential goal-gradient effects in the cognitive domain. Namely,
do individuals intensify their cognitive effort investment as they
approach a task goal—for example, the end of a block of trials?
While many researchers have observed that a person’s exertion of
flexible control over behavior fluctuates considerably over time
(Braver et al., 2003; Kahneman, 1973), a heretofore overlooked,
but potentially important determinant of momentary effort exertion
is goal proximity. For example, Emanuel et al. (2022) recently dem-
onstrated that people make more frequent button responses as they
near a time limit during a computer game task. While the key out-
come variable in this study was motor execution speed, it is notewor-
thy that the task itself involved a degree of cognitive effort (e.g.,
aiming and predicting a spaceship’s trajectory). These results thus
hint that cognitive effort may follow a similar gradient-like pattern
to motor effort, but importantly, the task used in this work was not
designed to directly index cognitive effort exertion.
Moreover, while past work has demonstrated that goal proximity

invigorates responding (Emanuel et al., 2022; Hull, 1932), it is
unclear how goal proximity affects cognitive task performance—
that is, the speed and fidelity of information processing.More specif-
ically, is information processing fidelity enhanced near a goal—
simultaneously resulting in faster and more accurate decisions—or
do individuals shift their speed-accuracy trade-off to respond more
quickly, but less accurately, near a goal? Here, we provide a direct
examination of goal-gradient effects in cognitive task performance
as individuals completed a simple cognitive task.
To do this, we employ an attentionally demanding oddball task

(Beierholm et al., 2013; see Figure 1), which required participants
to maintain active attention to make rapid (subsecond) and accurate
judgments about which of three stimuli presented on the screen is the

“odd one out.” Critically, on half of the trials, participants were pre-
sented with visual information about their progress with respect to a
goal (Figure 1A)—that is, the number of remaining correct responses
needed to complete a block and receive a monetary reward—allowing
us to measure subject-specific modulations in performance (response
time [RT] and accuracy) as a function of goal proximity and, in turn, to
probe the specific computational mechanisms underpinning potential
goal-gradient effects using a drift diffusion model (DDM; da Silva
Castanheira et al., 2022; Wiecki et al., 2013).

In an initial experiment (N= 40) and a replication sample (N=
42), we find that participants invested greater cognitive effort—
manifesting in performance increases—when a goal state was prox-
imal versus distant, and critically, these performance effects were
only observed when participants had information about their pro-
gress through a block (i.e., a progress bar [see Figure 1A], vs.
no-progress information [see Figure 1B]).

To test whether goal proximity enhances attentional processing
manifesting as strength of evidence, or if it shifts response strategy
via higher response caution—we used a DDM (Ratcliff & McKoon,
2008;Wiecki et al., 2013). In brief, the DDM assumes that the internal
evidence used to make a decision accumulates over time until a
response threshold—which controls the speed–accuracy trade-off—
is reached. By jointly analyzing response accuracy and RTs, fitting a
DDM affords additional understanding of whether the effects of
goal proximity on cognitive effort exertion are attributable to increases
in the strength of evidence accumulation (i.e., a faster drift rate; which
would result in more accurate and faster responses and indicate better
information encoding), or by increases in response caution (i.e., ele-
vated response thresholds; which would result in more accurate but
slower responses and indicate a shift in response strategy near a
goal). Critically then, the DDM allows us to dissociate between the
cognitive mechanisms underpinning effortful control near a goal—is
speeding driven by heightened drift rates, reflecting an uptick in the
rate of information processing, and/or by reduced response caution,
reflecting a shift along a speed–accuracy trade-off?

Method

Below, we describe the procedure for two experiments: an initial
experiment (Experiment 1) and a nearly identical replication study
(Experiment 2). As described below, differences between these two
experiments were minimal. Because these experiment designs and
ensuing results were nearly identical, our Results section reports results
fromboth experiments, though both data sets were analyzed separately.

Participants

To estimate an appropriate sample size, we conducted a simulation-
based power analysis (Arend & Schäfer, 2019) in which participant
behavior that was consistent with our hypotheses was simulated on
the Oddball task (described) below. Owing in part to the large number
of repeated trials individual participants completed in a session
(Mdn= 1,372 trials/participant), this a priori power analysis revealed
that 25 participants would yield 80% power to detect effect sizes of
minimal interest (see the online supplemental materials for full details
of the power analysis). Expecting some participants to be excluded
(see below), in Experiment 1, we recruited 40 healthy adult partici-
pants (91% female; average age= 22.24, SD= 3.64) from McGill
University’s participant pool. All participants gave informed consent
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prior to testing and were compensated with course credit plus a cash
bonus of $5 CAN. This procedure was approved by the McGill
Research Ethics Board (REB 137-0816).
To ensure participants achieved a minimum level of performance,

we excluded participants who failed to meet the following criteria
in the final analysis: More than 25% of responses were missing, par-
ticipants responded incorrectly, on average, less than 43% of the time
(10% more than chance performance), and average RTs were smaller
than 100 ms. These exclusion criteria unexpectedly resulted in the
exclusion of 17 participants, leaving only 23 participants in the final
analysis, falling short of our target sample size. Participant debriefings
indicated that the lack of distinguishable boundaries between trials
(i.e., interstimulus intervals [ISIs]; see Figure 1) may have contributed
to some participants’ poor accuracy rates in Experiment 1.
In Experiment 2, we attempted to mitigate this issue, recruiting an

additional 42 participants (91% female; average age= 20.00, SD=
1.58) in a replication study that was identical to Experiment 1, except
for the addition of a 100 ms ISI (see below). This addition improved
performance such that, using the same criteria as described above,
only five participants were excluded, leaving 37 participants in the
final analysis—well above the target sample size.

Oddball Task

Participants completed a fast-paced oddball task, which we
adapted from a previously used paradigm (Beierholm et al., 2013;
Guitart-Masip et al., 2011). The task was programmed using the
PsychoPy library for Python (Peirce, 2007). Each trial, participants

were shown three blue circles that were evenly spaced horizontally
across the screen. Two of these circles were identical, containing an
inner white circle at the top (bottom) of the blue circles, while the
third was different, containing a white circle at the bottom (top) of
the blue circles (see Figure 1). Participants were asked to identify
which shape was the “odd one out,” using the Q (leftmost circle),
W (middle circle), or E (rightmost circle) keys to indicate their choice.
The position of the odd circle was randomized from trial to trial.
Participants had 750 ms to indicate which stimulus was the “odd
one out.” If they did not respond in time, the shapes changed, and
the trial was marked as a timeout. In other words, the experiment
was self-paced, such that faster responses resulted in faster task com-
pletion. In Experiment 2, an ISI of 100 ms was included between each
set of stimuli, such that a brief “flash” differentiated one set of three
circles (i.e., one trial) from the next (the next trial).

Participants completed two types of oddball task blocks, each of
which required 60 correct responses to complete: progress blocks
and no-progress blocks (Figure 1). In progress blocks, a green pro-
gress bar was presented above the oddball stimuli (378 × 25 pixels).
Every time participants correctly identified the odd stimulus, the pro-
gress bar would increment by 1/60th of its total size. In no-progress
blocks, this progress bar was not shown. For each block, regardless
of progress information, participants were informed that if they
responded correctly and within the response deadline of 75% of tri-
als during a block, they would receive a reward. The reward was
indicated as either high ($0.20) or low ($0.02) and was displayed
either beside the progress bar on progress blocks or in the center
of the screen above the stimuli in no-progress blocks (Figure 1).

Figure 1
Schematic of the Oddball Task

Note. Participants were asked to judge which of three shapes was the “odd-one-out,” within
750 ms. The left path depicts an example block in the progress condition, with a green progress
bar incrementing after each correct response, culminating in the advertised reward being won,
assuming a minimum level of performance (at least 75% correct). The right path shows a no-progress
block, where the progress bar is not shown, but the same number of correct trials (60) is needed to
obtain the reward and progress in the task. In Experiment 2, a 100-ms ISI was added between each
judgment. Rewards remained on the screen for 1,000 ms. ISI = Interstimulus interval. See the online
article for the color version of this figure.
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At the end of each block, a screen appeared reading “You won
$X.XX” if participants met the performance criterion or “You
made too many mistakes this round. No extra money” if they did
not, for 1,000 ms.
Participants completed 16 blocks ("1,350 trials per participant)

of the oddball task in a 2 (progress, no progress)× 2 (low reward,
high reward) design repeated 4 times for each participant in a pseu-
dorandomized order.

Inferential Statistics

To examine performance, we estimated mixed-effects regressions
predicting participants (log) RTs on correct trials, and accuracy
(using a logistic model) from progress information condition
(deviance-coded,−0.5= no progress, 0.5= progress), goal proxim-
ity (distance to the end a block, mean-centered), and reward magni-
tude (deviance-coded, −0.5= low reward, 0.5= high reward).
Importantly, the goal-gradient hypothesis predicts that performance
should uptick sharply near a reward (Emanuel et al., 2022; Hull,
1932), and other work has suggested that this uptick near the end
of task may be accompanied by a parallel decrease in performance
near the start (Bonezzi et al., 2011). To capture this hypothesis in
our model, we also included a quadratic term for proximity (hereaf-
ter, proximity2), which is computed as the square of the goal prox-
imity term. Larger coefficients on this term thus reflect a steeper
increase in performance near the end of a task. All main effects
and interactions were modeled.
Supporting classical goal-gradient-like behavior, we hypothesized

that there would be a statistically significant interaction between pro-
gress condition and proximity and/or proximity2 to a reward, such that
participants’ response speeds and accuracy would vary when they
were aware that they were near a reward. Secondarily, we predicted
that the strength of the goal gradient would differ between reward con-
ditions (high vs. low), manifesting in a significant interaction between
reward magnitude, reward proximity, and reward condition, such that
(high vs. low).
These models were estimated using the lme4 package for R (Bates

et al., 2014). Likelihood-ratio tests were used to assess relative model
fit, and reported confidence intervals are based on the likelihood pro-
file (a.k.a., profile confidence intervals). Random slopes were
included unless they caused convergence issues. To better convey
the observed goal-gradient effects—and because reward effects
were inconsistent across analyses and experiments—Figures 2 and
3 depict behavior collapsed across reward levels.

Hierarchical DDM (HDDM)

To better understand how goal gradients might modulate strategies
of cognitive effort exertion, we fit a DDM to participants’ responses
and RTs across both experiments (Ratcliff & McKoon, 2008;
Wiecki et al., 2013). The DDM is one of a family of sequential-
sampling models which assume that people’s decisions are the results
of an iterative, noisy evidence accumulation process over time
(Ratcliff & McKoon, 2008). The process begins at some starting
point z and accumulates evidence over time to one of two decision
boundaries at a constant rate v, known as the drift rate. This accumu-
lation process is subject to random perturbations at each time step and
continues until one of two boundaries are crossed, which corresponds
to either option in the task: here, correct versus incorrect. The separation

between these boundaries is defined by the parameter a, such that
more evidence is required to reach a decision when a is larger.
The direction the evidence accumulation process heads toward (cor-
rect/incorrect) depends on the sign of the drift rate, v, where positive
values of v indicate evidence heading for one boundary (here correct
responding) and negative values indicate evidence heading toward
the other (incorrect responding). Once a boundary is crossed, a
response is initiated, which takes some nonzero amount of time to
encode and execute (t0; “nondecision time”).

While the traditional DDM assumes that decision boundaries, a,
other classes of DDMs allow for boundaries to vary dynamically
over the course of a trial. For example, the collapsing bounds DDM
assumes that decision boundaries get progressively narrower over
the course of a trial, reflecting increased urgency, and reduced caution,
as one spends more time on a task (Hawkins et al., 2015; Smith &
Ratcliff, 2022). In these variants, the rate at which decision bounds lin-
early collapse is given by an additional parameter, θ. When θ is large,
decision bounds collapse more quickly leading to reduced caution at
longer RTs (i.e., a larger θ corresponds to a greater deviation from 90°,
which would reflect stable bounds as in the standard DDM). Since the
predictions of a collapsing bounds model are consistent with our pre-
dictions about goal gradients in cognitive effort exertion, we also con-
sider this model in our analyses.1

We performed hierarchical Bayesian estimation of DDM parame-
ters using the HDDM package for Python (Version 0.9.9; Fengler
et al., 2022). We fit two broad classes of HDDMs to the present
data: a standard DDM, and the collapsing bounds model described
above. Posterior distributions for decision thresholds (a), drift rates
(v), nondecision times (t0), and, in the case of the collapsing bounds
model, collapse rate θ, were estimated on a trial-by-trial basis as a
linear combination of progress condition and proximity to reward,
with random intercepts taken per participant. All other parameters
were assumed to be fixed to default values set by HDDM (see
Fengler et al., 2022; Wiecki et al., 2013).

While analyses of task performance (described below) suggested
a quadratic relationship between goal proximity and RTs, it was
unclear which parameters of the HDDMwould reflect this quadratic
relationship. Moreover, multiple combinations of model structure
(standard vs. collapsing bounds) and parameter values may readily
capture the general pattern observed in the data. As such, it was
important to explore the full parameterization space of these
regression-based DDMs. Accordingly, we fit 2,744 separate
HDDMs to the data, which covered the full model and parameter
space, and compared model fit for each model using the deviance
information criterion (DIC; Gelman et al., 2014). The specification
of each model is included in the online supplemental materials,
and goodness of fit for each model is visualized in Figure S4 in
the online supplemental materials.

Five thousand samples were drawn from the posterior for each
parameter, discarding the first 2,000 samples for burn-in, and no
thinning was applied. Convergence for winning models was
assessed via visual inspection of trace plots, Geweke’s statistics
(Geweke, 2005; reported in Table 3), and posterior predictive check-
ing, presented in Figure S5 in the online supplemental materials.
Geweke’s statistic test for equality of the means of the first (10%)

1 The authors thank an anonymous reviewer for suggesting we consider
collapsing bounds variants of the DDM to the present data set.
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and last part of a Markov chain (50%). If samples are drawn from a
stationary distribution, the two means are statistically equivalent,
and the associated absolute Z-score (known as Geweke’s statistic)
is below 1.96, which indicates that a chain has converged success-
fully. We also conducted a parameter recovery, which demonstrated
that parameters from thewinning model recovered well (Figure S6 in
the online supplemental materials).
All reported coefficient estimates (b values) for the HDDM are

mean posterior values and 95% highest posterior density intervals.
Bayesian p values (p) represent one minus the proportion of the pos-
terior that falls above or below zero (depending on the sign of the
median posterior value: below zero if b, 0 and above if b. 0).

Transparency and Openness

All task codes, materials, raw data, analysis scripts, results, and
computational models are openly available at https://github.com/
seandamiandevine/EffortProgress2.

Results

Task Performance

Overall, participants’ RTs were fast (Experiment 1:M= 534.46),
taking on average 71% of the allotted time (750 ms) to respond
as well as accurate—P(Correct)= 0.86. Critically, in the progress
information condition (“progress” blocks), participants had a
visual cue indicating their proximity to a reward whereas in
“no-progress” blocks this information was absent. In accordance
with goal-gradient hypothesis, we hypothesized that participants
would exhibit speeded responses near a goal (i.e., the reward at
the end of a block), but only when participants had information
about task progress.

Figure 2A and 2C depict participants’ RTs as a function of the
proportion of correct responses made relative to the total number
of correct responses needed to obtain a reward (60 per block) in
Experiments 1 and 2, respectively. Consistent with classic goal-
gradient effects—characterized by increased vigor near a reward

Figure 2
Task Performance Over the Course of a Block in Experiments 1 (A and B) and 2 (C and D)

Note. Green lines (dark gray) represent performance during progress blocks and gray lines (light gray) represent
performance during no-progress blocks. Each point represents an averaged bin of correct response times (A, C)
or proportion of correct trials (C, D), represented on the y-axis. The x-axis shows the proportion that the progress
bar was filled (i.e., proximity to the reward; whether (green/dark gray) or not (gray/light gray) it was shown to
participants). Ribbons represent the standard error of the mean. RT= response time; P(Correct)= proportion
of correct; P(Bar Filled)= progress bar was filled. See the online article for the color version of this figure.
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(Brown, 1948; Hull, 1932)—participants’ RTs hastened as they
neared a reward, but only when information about their block pro-
gress was presented. In the absence of progress information, partic-
ipants’ RTs progressively slowed over the course of a block,
consistent with an accruing mental fatigue or task disengagement
(Lorist et al., 2005).
Examining (log) RTs with mixed-effect regressions, the best-fitting

model in both experiments included both a linear and quadratic term
representing proximity to reward—Experiment 1: χ2(2)= 13.56,
p= .001; Experiment 2: χ2(2)= 103.12, p, .0001 (see Table 1 for
coefficient estimates). More importantly, we found a significant inter-
action between progress condition and (linear) goal proximity
(Experiment 1: b=−0.08, 95% confidence interval [CI]= [−0.12,
−0.04], p, .0001; Experiment 2: b=−0.08, 95% CI= [−0.10,
−0.05], p, .0001) as well as an interaction between progress condi-
tion and (quadratic) goal proximity (Experiment 1: b= 0.26, 95%
CI= [−0.43, −0.09], p= .002; Experiment 2: b=−0.37, 95%
CI= [−0.47, −0.28], p, .0001). These effects are visualized in
Figure 3A and 3C.
Figure 3B and 3D depict response accuracy as a function of block

progress. Again, we found that the best-fitting logistic regression
model for both experiments included a linear and quadratic term
for reward proximity—Experiment 1: χ2(2)= 47.26, p, .0001;
Experiment 2: χ2(2)= 28.10, p, .0001. Overall, in both experiments,
we observed that accuracy declined linearly over the course of a block
(Experiment 1: b=−0.83, 95% CI= [−0.96, −0.69], p, .0001;
Experiment 2: b=−0.37, 95% CI= [−0.50, −0.24], p, .0001).
In Experiment 2, we found a slight improvement of accuracy as
participants neared a reward, as reflected in an interaction between pro-
gress condition and (quadratic) reward proximity (b= 1.02, 95%CI=
[0.00, 2.04], p= .049; see Table 2 for full coefficient estimates). This
effect was not statistically significant in Experiment 1 (b= 0.50, 95%
CI= [−0.50, 1.53], p= .339), though its positive directionality sug-
gests against the possibility that accuracy worsened near a reward
(Figure 2B and 2D).

As we manipulated reward amount in a blockwise fashion, hold-
ing goal proximity constant, reward incentives did not reliably shift
task performance across experiments (Tables 1 and 2): Accuracy was
higher in Experiment 1, and RTs were faster in Experiment 2, on
high (vs. low) reward blocks, but these effects were not consistent
across experiments. This is consistent with past work, showing
that performance on the oddball task is particularly sensitive
to trial-by-trial fluctuations in reward magnitudes (Beierholm et
al., 2013; Guitart-Masip et al., 2011), but perhaps less sensitive to
the blockwise manipulation used here, which was a necessary
by-product of the goal proximity manipulation.

Finally, we examinedwhether the apparent goal-gradient effects dif-
fered across reward magnitudes, finding small and inconsistent effects
of available reward for each block upon RTs across experiments.
Specifically, we observed a three-way interaction between progress
condition, proximity2, and reward condition in both experiments.
However, these observed effects were in the opposite direction across
experiments: In Experiment 1, low-reward blocks engendered
enhanced RT speeding when participants had block progress informa-
tion (b= 0.47, 95%CI= 0.14–0.81, p= .005; Figure S2 in the online
supplemental materials; see Tables 1 and 2), whereas in Experiment 2,
we found enhanced speeding in high-reward blocks when progress
information was present (b=−0.22, 95% CI= [−0.42, −0.02],
p= .03; Figure S3 in the online supplemental materials). Similar
inconsistent and weak reward effects on goal gradients have recently
been reported in the literature (Emanuel, 2022; Emanuel et al., 2022).

DDM Fits

To examine whether the observed effects of goal proximity upon
task performance are explained by an increased quality of sensory
information from the stimuli (which would manifest as a goal
proximity-induced changes in drift rate), a change in response caution
(manifesting as proximity-induced changes in response thresholds), or
a change in response execution time (manifesting as changes in

Figure 3
Predicted Parameter Values for the Best-Fitting DDM

Note. The y-axis shows the posterior prediction for the parameter (referenced in each subfigure title) as a function of block progress. The x-axis shows the
proportion that the progress bar was filled (i.e., proximity to the reward). Green lines (dark gray) represent predictions during progress blocks, where the pro-
gress bar was shown. Gray lines (light gray) represent predictions during no-progress blocks, where the progress bar was not shown. DDM= drift-diffusion
model; P(Bar Filled)= progress bar was filled. See the online article for the color version of this figure.
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nondecision time), we jointly modeled participants’ RTs and accura-
cies using two variants of a HDDM (Fengler et al., 2022;Wiecki et al.,
2013): a standard three-parameter DDM (thresholds, drift rate, and
nondecision times) and a collapsing bounds DDM (includes an addi-
tional linear threshold collapse parameter). Owing to the similarity in
behavioral results between experiments, we fit a single model to the
data from both experiments. Furthermore, given the observed qua-
dratic relationship between reward proximity and RTs in the progress
condition (Figure 2A and 2C), we intuited that some combination of
trial-by-trial DDM parameters (drift rate, threshold, nondecision time,
and, possibly, collapse rate) would depend on a quadratic term repre-
senting goal proximity (proximity2).
As we did not have strong intuitions about how potential goal prox-

imity effects might manifest in DDM parameters, we compared the
goodness of fit of 2,477 different HDDM specifications—which
exhaustively covered the space of possible combinations of linear
and quadratic relationships between goal proximity and the DDM
parameters of interest—to participants’ behavior. Overall, we found
that a collapsing bounds variant of the DDM fit the present data mark-
edly better than a standard (fixed bounds) DDM (difference inmedian
DICs= 22,719.63; Figure S4 in the online supplemental materials).
The best-fitting model assumed that decision thresholds and drift

rates depended (quadratically) on progress condition and goal proxim-
ity, where nondecision times and boundary collapse rate changed (lin-
early) over the course of a block. Thismodel captured behavior well in
both experiments, as evidenced by the posterior predictive checks
visualized in Figure S5 in the online supplemental materials. Mean
posterior values, credibility intervals, Bayesian p-values, and
Geweke’s statistics are presented in Table 3 for both experiments.

Figure 3 depicts predicted trial-to-trial parameter values of the
winning collapsing bounds model over the course of a block, as a
function of simulated values of progress condition (progress or no
progress) and reward proximity. With respect to decision thresholds,
we observed a robust interaction between progress condition
and goal proximity (b=−0.09, 95% CI= [−0.11, −0.06], p= 0)
and proximity2 (b=−0.19, 95% CI= [−0.22, −0.16], p= 0),
such that participants exhibited reduced decision thresholds as
they approached a reward, when progress information was present
compared to when it was not. In other words, when participants
were aware of their proximity to a reward, participants responded
less cautiously near a reward than when they were unaware.
Moreover, boundaries collapsed more quickly (larger boundary
collapse angle) overall during progress blocks as compared
to no-progress blocks (b= 0.002, 95% CI= [0.0003, 0.003],

Table 1
Best-Fitting Mixed-Effects Linear Regressions Predicting (Log) Response Times in Experiments 1 and 2

Coefficient

Experiment 1 Experiment 2

b 95% CI p b 95% CI p

Intercept 6.23 [6.20, 6.26] ,.001 6.23 [6.21, 6.25] ,.001
Prog. cond. −0.00 [−0.02, 0.02] .979 0.02 [0.01, 0.03] ,.001
Reward −0.00 [−0.02, 0.02] .761 −0.02 [−0.03, −0.00] .007
Proximity 0.01 [−0.01, 0.04] .21 0.01 [0.00, 0.03] .047
Proximity2 –0.09 [−0.17, −0.00] .04 −0.18 [−0.23, −0.13] ,.001
Prog. Cond.×Reward −0.02 [−0.06, 0.01] .235 0.04 [0.02, 0.06] .001
Prog. Cond.× Proximity −0.08 [−0.12, −0.04] ,.001 −0.08 [−0.10, −0.05] ,.001
Prog. Cond.× Proximity2 –0.26 [−0.43, −0.09] .002 −0.37 [−0.47, −0.27] ,.001
Reward× Proximity −0.03 [−0.07, 0.02] .25 0.01 [−0.02, 0.03] .666
Reward× Proximity2 0.1 [−0.06, 0.27] .232 0.09 [−0.01, 0.18] .088
Prog. Cond.×Reward× Proximity −0.07 [−0.15, 0.02] .134 0.03 [−0.02, 0.08] .292
Prog. Cond.×Reward× Proximity2 0.47 [0.14, 0.81] .005 −0.22 [−0.42, −0.02] .03

Note. CI= confidence interval; prog. cond.= progress condition.

Table 2
Best-Fitting Mixed-Effects Logistic Regressions Predicting Correct Responses in Experiments 1 and 2

Coefficient

Experiment 1 Experiment 2

b 95% CI p b 95% CI p

Intercept 1.92 [1.64, 2.20] ,.001 2.47 [2.31, 2.63] ,.001
Prog. cond. −0.09 [−0.20, 0.01] .089 −0.15 [−0.26, −0.04] .006
Reward 0.17 [0.07, 0.28] .002 −0.01 [−0.12, 0.10] .882
Proximity −0.83 [−0.97, −0.70] ,.001 −0.37 [−0.50, −0.24] ,.001
Proximity2 1.75 [1.23, 2.26] ,.001 1.27 [0.76, 1.78] ,.001
Prog. Cond.×Reward 0.04 [−0.17, 0.25] .714 0.15 [−0.07, 0.36] .181
Prog. Cond.× Proximity −0.16 [−0.43, 0.11] .239 −0.28 [−0.54, −0.01] .042
Prog. Cond.× Proximity2 0.5 [−0.53, 1.53] .339 1.02 [0.01, 2.04] .049
Reward× Proximity −0.11 [−0.38, 0.16] .437 0.1 [−0.16, 0.37] .45
Reward× Proximity2 –1.21 [−2.24, −0.18] .022 −0.07 [−1.10, 0.95] .886
Prog. Cond.×Reward× Proximity −0.16 [−0.70, 0.38] .563 0.06 [−0.47, 0.60] .819
Prog. Cond.×Reward× Proximity2 0.41 [−1.66, 2.48] .700 −0.09 [−2.09, 1.91] .931

Note. CI= confidence interval; prog. cond.= progress condition.
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p= .01), further suggesting reduced caution when progress informa-
tion was available.
With respect to trial-to-trial drift rates, we observed an interaction

between progress condition and proximity2 (b= 0.18, 95%
CI= [0.13, 0.25], p= 0), suggesting that drift rates initially decreased
over the course of a block, but increased sharply near the end—and
importantly, this uptick was more not present when progress informa-
tion was not present (Figure 3B).
Finally, we did not observe any modulation of nondecision times

by progress condition (see Table 3).
Taken together, the results of the HDDManalysis suggest that goal-

proximity induced task performance shifts were best explained by two
mechanisms: while the fidelity with which participants processed
information (drift rates) increased near a reward, response caution
diminished suggesting a shift from a slower, but accuracy-oriented,
strategy in the middle of a task block to a faster, but incautious,
response style during and near the end of a task block when progress
information was known.

Discussion

Exerting sustained cognitive effort is taxing and aversive, and
these effort costs are exacerbated with continued exertion (Kool
et al., 2010; Shenhav et al., 2017). However, it has also long been
observed that the investment of cognitive resources into a demand-
ing task fluctuates considerably over time (Braver et al., 2003;
Kahneman, 1973; Otto & Daw, 2019). In line with this view, both
recent (Emanuel et al., 2022; Katzir et al., 2020) and classical
(Hull, 1932) work on goal gradients posit that effort exertion should
uptick near the end of a task—when the rewards associated with
the successful completion of that task are proximal. Yet, empirical

evidence for this claim in cognitive effort is scant and the computa-
tional mechanisms underpinning proximity-induced effort modula-
tions of this type have not been investigated. Here—first in a novel
experiment and then again in a replication sample—we examined
goal-gradient-like behavior in a demanding attentional oddball task.

We found that participants engaged in speeded, but nevertheless
accurate, responding as a function of goal state proximity and that
this behavior was (a) present only when participants were aware of
their proximity to a goal, and (b) consistent across levels of rewards
on offer. Thus, participants were not only faster, but also equally—
or even slightly more—accurate near the end of a block. Notably,
the relationship between response speed and goal proximity was qua-
dratic in nature, owing to slower performance in the middle of a block.
This finding is consistent with past work demonstrating a negative
relationship between time on task and sustained attention and motiva-
tion (Fortenbaugh et al., 2017) and highlights the relative nature of
goal gradients as a means of enhancing effort exertion from motiva-
tional low points (e.g., during late-block trials in the no-progress con-
dition in these experiments; Bonezzi et al., 2011), as well as rules out
simple learning effects as an explanation for goal gradients. In this
regard then, these results hint that goal gradients in the current task
acted to restore motivation near a goal state, rather than to enhance
it beyond a preestablished control point. Together, these shifts in per-
formance reflect key indicators of increased cognitive effort exertion.
Moreover, they extend past work on goal gradients which simultane-
ouslymeasured effort exertion in both cognitive and physical domains
(Rauch et al., 2013), and suggest that motor response vigor closer to
the end of the taskmight be explained by a combination of adaptations
of response strategy (above and beyond solely response speed).

In this respect, these results suggest a shift in cognitive strategies
that cannot be explained by a simple speed–accuracy trade-off

Table 3
Parameter Estimates for the Best-Fitting DDM

Coefficient M 95% CI p Geweke’s statistic

Decision thresholds
Intercept 2.151 [1.841, 2.523] .000 −1.721
Proximity 0.159 [0.137, 0.179] .000 −12.334
Proximity2 −0.097 [−0.122, −0.074] .000 9.411
Prog. cond. 0.008 [−0.002, 0.018] .061 1.112
Prog. Cond.× Proximity −0.086 [−0.11, −0.064] .000 1.169
Prog. Cond.× Proximity2 −0.187 [−0.215, −0.16] .000 −2.707

Drift rate
Intercept 2.983 [2.942,3.000] .000 −0.253
Proximity −0.028 [−0.048, −0.009] .003 1.570
Proximity2 0.108 [0.08, 0.142] .000 −3.452
Prog. cond. −0.020 [−0.04, −0.001] .021 0.176
Prog. Cond.× Proximity −0.004 [−0.014, 0.005] .198 −0.881
Prog. Cond.× Proximity2 0.181 [0.134, 0.248] .000 −1.704

Nondecision times
Intercept 0.014 [0.001, 0.043] .000 −0.318
Proximity 0.000 [−0.001, 0.001] .424 −0.676
Proximity2 0.000 [−0.001, 0.001] .282 1.610
Prog. Cond. 0.000 [−0.001, 0] .286 1.492
Prog. Cond.× Proximity 0.000 [−0.002, 0.001] .304 1.476

Boundary collapse rate
Intercept 1.285 [1.25, 1.3] .000 −1.330
Proximity 0.012 [0.008, 0.017] .000 −9.691
Proximity2 −0.010 [−0.017, −0.005] .000 8.178
Prog. cond. 0.002 [0, 0.003] .012 −0.579

Note. DDM= drift-diffusion model; CI= confidence interval; prog. cond.= progress condition.
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(Heitz, 2014). Supporting this view, we demonstrate that these goal-
gradient effects are well-characterized by a collapsing decision
bounds variant of the DDM (Figures S4 and S5 in the online supple-
mental materials). Specifically, we find that decision thresholds
decreased, but concurrently, drift rates rapidly upticked in proximity
to a reward.
How might this constellation of DDM parameter changes be inter-

preted, psychologically? Previous research suggests that narrowing
decision thresholds may be associated with reduced response caution,
reflecting a failure, or disinclination to incorporate additional evidence
into one’s decision (Lin et al., 2020; Voss et al., 2004). At the same
time, heightened drift rates have been interpreted as an increase in
fidelity of stimulus encoding which manifests in an increased rate of
information uptake per unit time (Voss et al., 2004), motivation to per-
form a task correctly (Bottemanne & Dreher, 2019), and increased
cognitive control deployment (Cavanagh et al., 2014; Otto &
Daw, 2019). More parsimoniously then, drift rates here should
be understood to reflect a modulation in proximal cognitive control
allocation—for example, momentary attention to the current task—
which in turn can be up- and downregulated by motivation factors
(Cavanagh et al., 2014; Leng et al., 2021). In line with the goal-
gradient hypothesis, increased drift rates have also been theorized to
reflect increased effort costs (Drugowitsch et al., 2012). Taken
together, the pattern of DDM parameter changes observed here—
and their contingent change over the course of a block based on the
presence versus absence of progress information—suggests that prox-
imity to rewards may reflect a global “urgency” signal, signaling a
shift in behavioral strategy, from a slow and cautious approach to
the task to a faster, completion-focused, but nevertheless cognitive
effortful, one.
Connecting this account to our computational results more

directly, recent work has highlighted how joint changes to drift
rates and thresholds might reflect a simultaneous reconfiguration
of control strategies in favor of maximizing reward rate. For example,
Leng et al. (2021) observed that participants dynamically allocated
cognitive control to a task to optimize the trial-by-trial reward rate
in the task—captured by simultaneous drift rate increases and thresh-
old decreases—suggesting an adaptive shift in response to shifts in
task incentives (Ritz et al, 2022). Similarly, Otto and Daw (2019)
found that moment-to-moment shifts in the environmental average
reward rate engendered simultaneous decreases in drift rates and
thresholds, interpreted as a withdrawal of cognitive effort with a con-
comitant reduction in response caution. While the present task was
not specifically calibrated to detect nuanced changes in control
parameters in response to changes in incentive (as rewards were
fixed within a block of trials), participants here may have simply
used goal proximity as a cue to reconfigure control strategies to
favor reward rate maximization, without external change in the
incentive structure of the task.
Finally, and in line with a growing body of evidence suggesting that

such urgency signals guide neuronal activity and behavior within the
course of a single trial (Cisek et al., 2009), one interpretation of the cur-
rent results is that requirements on evidence accumulation over the
course of a longer time period are modulated when rewards are prox-
imal versus distal. Consistent with classical work on goal gradients in
rats (Brown, 1948; Hull, 1932), similar urgency signals have been
observed to guide low-level behavior in animals as well as humans
at the trial level (Hanks & Summerfield, 2017; Hernández-Navarro
et al., 2021; Thura & Cisek, 2017). Analogously then, goal gradients

in this context seem to reflect a larger manifestation of urgency signals,
governing behavior not only at the trial level, but also within the local
context (here a block, or elsewhere an entire experiment; Katzir et al.,
2020, a foot race; Tucker et al., 2006, a semester; Brahm et al., 2017, in
consumer decisions; Zhu et al., 2018).

It is important to remark on limitations of the present results and
future directions that they may suggest. First, the effects of reward on
offer on goal-gradient behavior in the present data were inconsistent
between experiments and, contrary to our initial hypothesis, goal-
gradient behavior was largely invariant to changes in reward magni-
tude. On the one hand, it is possible that reward magnitudes were too
low in the present set of experiments to evince larger differences in
task performance, as evidenced by the relative lack of incentive effects,
holding goal proximity constant. This would be consistent with past
work, in which reward incentive effects can be highly variable and
context-dependent (e.g., Otto & Daw, 2019). On the other hand, this
finding is also consistent with recent work (Emanuel, 2022), showing
that the effects of monetary reward on proximity-induced (motor) effort
exertion were heterogeneous and, elsewhere (Emanuel et al., 2022),
that changes in motor vigor may be less sensitive to goal proximity
when a goal is based on performance-based metrics success.

Second, the present set of experiments only used rewards as a
motivating stimulus. This is notable, as a key tenet of classical
work is that goal gradients should be steeper for avoidance behaviors
(Heilizer, 1977). Future work should therefore endeavor to test
whether this hypothesis holds in the domain of cognitive effort.
This could be accomplished by extending the present work to the
avoidance domain, using, for instance, painful stimulation instead
of (or in addition to) monetary reward.

Third, the present study was principally concerned with how goal
gradients manifest in cognitive effort exertion, and the computational
mechanisms that underpin these effects. Another important question
is why these effects occur. In this respect, Emanuel et al. (2022)
recently argued that goal-gradient effects in motivation can be
explained by diminishing opportunity costs (of the to-be-completed
task) near a goal (see also Beierholm et al., 2013; Dora et al., 2022;
Kurzban et al., 2013). On this view, as an individual nears a goal,
their motivation to complete the task increases because the value of
engaging in an alternative activity (e.g., mind-wandering, adjusting
one’s chair) decreases, since these activities can be postponed until
after a task is completed at a lower cost. We believe the present results
support this interpretation, and also, importantly, shed light on the
question of whether individuals are more motivated to “get it done”
(Bonezzi et al., 2011) versus “to do it well” (Touré-Tillery &
Fishbach, 2012) near the end of a task. Here, our results support
both views, such that as opportunity costs decrease near the end of
a task, participants invest increased attentional control into the task
(as reflected by an uptick in drift rates), but also aim to finish the
task quickly, by reducing evidentiary demands.

Taken together, our results extend past work on goal gradient on
physical (motor) effort to the cognitive domain using a simple atten-
tional task. Moreover, they highlight an important, but previously
unconsidered, feature of goal gradients: While effort exertion
increases near a goal (reflected here by heightened drift rates), cau-
tion tends to decrease (reflected by reduced, and collapsing, decision
thresholds). This finding is informative not only for theories of goal
gradients—relating them, in particular, to the concept of urgency—
but also bears practical importance. Interventions utilizing pro-
gress indicators to boost performance have become increasingly
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commonplace in educational and workplace settings (Amabile &
Kramer, 2011). These interventions rest on the view that information
about one’s progress will incrementally increase performance.
Insofar as this higher order performance depends on constituent
components of cognitive control—here, attention and inhibition—
our results call for nuance, as gains in effort exertion should be
weighed against potential losses in caution and deliberation.

Constraints on Generality

The current sample consisted principally of English-speaking
Western students, recruited at a large Canadian research university.
While we have no theoretical reason to suspect that the current results
do not generalize to other cultural and demographic groups, this is an
assumption which should be tested in future replication work.
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