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Multilevel modeling techniques have gained traction among experimental psychologists 
for their ability to account for dependencies in nested data structures. Increasingly, these 
techniques are extended to the analysis of binary data (e.g., correct or incorrect 
responses). Despite their popularity, the information in logistic multilevel models is 
often underutilized when researchers focus solely on fixed effects and ignore important 
heterogeneity that exists between participants. In this tutorial, we review four techniques 
for estimating and quantifying the relative degree of between-person variability in 
logistic multilevel models in an accessible manner using real data. First, we introduce 
logistic multilevel modeling, including the interpretation of fixed and random effects. 
Second, we review the challenges associated with the estimation and interpretation of 
within- and between-participant variation in logistic multilevel models, particularly 
computing the intraclass correlation coefficient (ICC), which is usually a first, simple step 
in a linear MLM. Third, we demonstrate four existing methods of quantifying the ICC in 
logistic multilevel models and discuss their relative advantages and disadvantages. 
Fourth, we present bootstrapping methods to make statistical inference about these ICC 
estimates. To facilitate reuse, we developed R code to implement the discussed 
techniques, which is provided throughout the text and as supplemental materials. 

1. Introduction   

From 2007 to 2017 there has been a threefold increase 
in published psychology articles that use multilevel model-
ing techniques (Huang, 2018), which is in part due to the 
nested structure of psychological data: individual observa-
tions clustered within participants or participants clustered 
within groups. Across multiple areas of psychology, behav-
ioural economics, and other behavioural sciences, nested 
data often arise from experiments in which participants 
have completed multiple trials of a task. Analyzing these 
data with traditional statistical tests (e.g., fixed-effects 
ANOVA, linear regression) fails to account for this nested 
structure and violates the assumption of independence of 
observations. When responses come from the same partic-
ipant, they are more similar than if they come from in-
dependently sampled participants. These response redun-
dancies deflate the effective sample size, cause incorrect 
standard errors, and often cause higher Type I error rates 
(Snijders & Bosker, 2011). 

In addition to these data being nested, the outcome vari-
able of interest is many psychological datasets are often 
binary (e.g., accuracy or binary choices), rather than con-

tinuous. Such data can be modeled using logistic multilevel 
models (i.e., logistic mixed-effects regressions), which 
model the probability of success/correct choice while han-
dling the dependencies that arise in nested datasets. How-
ever, these techniques are underexploited in practice. That 
is, while it is becoming common for researchers to fit mul-
tilevel models to nested experimental data, interpretation 
of the results is primarily, if not exclusively, focused on the 
‘fixed effects’ of the model. As a result, estimates based 
on the variance of the random effects— e.g., the intraclass 
correlation (ICC), which capture the relative importance 
of variability between participants’ responses (or between 
other types of clusters)—are seldom used to support or 
speak against conclusions. 

Why should researchers care about the ICC in their mul-
tilevel logistic models? First, it quantifies theoretical phe-
nomena, such as, how variable participants’ responses are 
during a task or how stable an effect is across people. Relat-
edly, this provides a starting point for explanatory power: if 
most of the variability in the data comes from differences 
between persons, then model building is a useful exercise 
with person-level predictors, whereas if most of the vari-
ability in the data comes from within-person variations, 
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then the researcher will want to explore the variability of 
responding to their task and investigate differences be-
tween conditions. At present, it is uncommon for re-
searchers to report or even investigate the random effects 
variance or the ICC when outcomes are binary, which is in-
consistent with best practices for the transparent reporting 
of any multilevel model (Luo et al., 2021). 

To support researchers in expanding their understanding 
of their data and encourage best practice, this tutorial ex-
plains how to estimate and interpret the ICC in logistic 
multilevel models. A tutorial focusing on this topic is 
needed for at least three reasons: 1) the unique challenges 
that computing and interpreting the ICC in logistic multi-
level models poses are seldom addressed in an accessible 
manner, 2) while other works have provided methods to 
compute the ICC in a logistic multilevel context (e.g., Gold-
stein et al., 2002; Merlo et al., 2006), there does not exist 
a didactic survey of methods aimed at increasing uptake 
by psychologists (see, for instance, examples in social epi-
demiology; Austin & Merlo, 2017; Merlo et al., 2006), and 
3) texts that do address this issue tend to focus on only a 
single method (e.g., Snijders & Bosker, 2011) ignoring the 
differences between various methods. 

Accordingly, we have four goals. First, for the uniniti-
ated, we provide a brief introduction to linear multilevel 
regression (in the Supplemental Materials, sections S6b, 
explained below) and logistic multilevel regression, which 
includes the interpretation of fixed and random effects. 
Second, we review the challenges associated with the in-
terpretation and estimation of the relative contribution of 
within- and between-participant variation in logistic mul-
tilevel models—namely in the computation of the intraclass 
correlation (also known as the variance partition coeffi-
cient, VPC). Third, we explain four existing methods of 
quantifying the ICC in logistic multilevel models, highlight-
ing the differences between the methods. Finally, we de-
scribe bootstrapping methods which permit statistical in-
ferences about these variance estimates and comment on 
the application of the reviewed techniques for models with 
additional predictors and random slopes. Throughout the 
tutorial we include Code Boxes which illustrate the concepts 
discussed in the main text using the R programming lan-
guage, in a step-by-step fashion.1 

To accomplish these goals, we use an example dataset 
from experimental cognitive psychology (see Section 2), 
where responses are nested within-participants. However, 
the topics discussed extend to cases where binary data may 
be nested within other types of clusters (e.g., groups, 
schools, countries, etc.). Namely, while the computations 
presented below do not change based on the nature of the 
grouping variable in the data, the interpretation of the ICC 
does. In contexts where the data are grouped by organi-
zations or “clusters”, such as data collected from different 

schools or hospitals, the ICC measures the proportion of 
the total variance that is attributed to the variability be-
tween clusters, sometimes referred to as “the intra-cluster 
correlation.” This quantifies the impact of the clustering 
variable (e.g., schools) as well as how subjects within the 
same cluster are similar. Another interpretation of the ICC 
in this context then is the average correlation in the out-
come data between measurements from the same cluster. 
When participants provide repeated measures (e.g., in a 
psychological experiment), the ICC measures the propor-
tion of the total variance that is due to the differences be-
tween individuals. Here, the ICC can provide insights about 
how individual differences among subjects exert an influ-
ence on the outcome. It is this latter interpretation of the 
ICC, in the context of a binary outcome variable, that will 
be the focus of this tutorial. 

We developed materials to be reusable and reproducible. 
We encourage readers to follow along with the supplemen-
tary material, which we refer to throughout (e.g., S1, refer-
ring to “supplement section 1”) and includes all R code with 
explanatory narrative that can be used to reproduce the re-
sults highlighted in the main text. The main text of this 
tutorial is aimed at someone who has experience execut-
ing multilevel models in R and would like to expand their 
knowledge to logistic models. For those with less back-
ground knowledge, readers can review the relevant sections 
of the supplemental materials (see Section S6). 

2. Illustrative Data Description     

Data for this tutorial are taken from a study examining 
how acute stress engenders avoidance of cognitively ef-
fortful tasks (Bogdanov et al., 2021; data available at 
https://osf.io/26w4u/). Thirty-eight young adults (20 fe-
male; PID in the dataframe) completed 300 trials of the 
well-characterized demand selection task (DST) in blocks 
of 150 trials, in which participants repeatedly chose be-
tween two nondescript cues that represented demand levels 
of a cognitively demanding task-switching paradigm: a low-
demand condition and high-demand condition (ef-
fort_choice, 0 = low demand, 1 = high demand; see Figure 
1). 

In Bogdanov et al., (2021), participants completed the 
DST before and after being exposed to acute social stress 
(condition, control or stress), in a repeated-measures de-
sign. Their research question was whether willingness to 
exert cognitive effort (i.e., to choose the high effort cue) 
would change after being exposed to acute social stress. For 
the purposes of this tutorial, we will focus on data from 
sessions in which participants were not exposed to social 
stress to predict effort aversion (S1 demonstrates how to 
load this subset of the data). 

For ease of use, function code for each method is available for download from the following GitHub repository, which compute the mea-
sure of interest on a fitted logistic multilevel regression model: https://github.com/seandamiandevine/logisticicc. A brief demonstration 
of how to call these functions is provided in the Supplemental Materials (S6d). 

1 
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Figure 1. Schematic Representation of the DST.      
In each trial of the task, participants chose between one of two pattern cues. After selecting a cue, a random number (range = 1–4 and 6–9) was presented in either yellow or blue at 
the center of the chosen cue. Participants then judged either the number’s parity if the number was yellow (whether the number was odd or even) or its magnitude if the number was 
blue (whether the number was larger or smaller than 5). The choice of cue dictated the probability with which these tasks switched from trial-to-trial (the switch rate). Choosing the 
high-demand cue (upper row) resulted in a task-switching probability of .9, whereas choosing the low-demand cue (lower row) resulted in a task-switching probability of .1. 

The traditional finding using this task is that partici-
pants will demonstrate a marked preference for the low-
demand option over the high-demand option, reflecting a 
general bias against performing cognitively demanding ac-
tivities, and in favour of less cognitively demanding activ-
ities (Kool et al., 2010). This recurring finding of demand-
avoidant preferences has been interpreted as evidence that 
humans have a default tendency to avoid cognitively effort-
ful tasks (Kool et al., 2010; Kool & Botvinick, 2018). 

In this tutorial, the outcome variable of interest is par-
ticipants’ effort choices in the DST, which are binary (low 
demand or high demand) and nested (within participants; 
each participant makes many choices). We begin with how 
to model these data using logistic multilevel models, pre-
dicting the effect of effort level on cue preference in the 
DST, with the lme4 package in R (Bates et al., 2015). For 
those less familiar with linear multilevel regression, review 
S6a, for those who need a refresher on logistic regression, 
review section 3. 

3. Logistic Multilevel Regression     

Linear multilevel regression models (see S6b) can be 
generalized to model binary outcomes. In this case, the goal 
is to model the probability that a given participant chose 
the high-effort option (effort_choice) on a given trial. If 
our binary data are coded as 0 (low effort option chosen) 
and 1 (high effort option chosen), this probability will be 
equal to the mean of the outcome: , where i 
refers to the ith trial and j refers to jth participant. However, 
predicting probabilities as a linear combination of predic-
tors creates problems, because probabilities are bounded 
between 0 and 1 inclusive, whereas predicted values from 
a linear model (see S6a for more information) can, in the-
ory, take on any value between negative and positive infin-

ity. To circumvent this issue in logistic regression, a linear 
combination of the model’s parameters and its predictors 
are computed on the logit scale—and then, afterwards, the 
regression predictions are transformed back to probabilities 
via a mean function. The regression on the logit scale is a 
linear model for the log of the odds of an event occurring 
(in this case, the odds of choosing the high effort option), 
where the odds represent the probability of the event oc-
curring over its complement : 

Here, the left-hand side of the equation represents the lin-
ear combination of  and  on the logit scale (log-
odds, ), where  is some predictor variable of interest 
(presented here for completeness, though for most of this 
tutorial we will focus on intercept-only models). A feature 
of the logit scale is that it is simple to transform it into 
odds, and from there, into probabilities: 

This gives us three ways to express the same linear com-
bination of predictors in Eq. 1: log odds (i.e., logit scale), 
odds, and probabilities. In the case of effort choices in the 
DST, if  and , assuming , then 
the log odds would be -0.34 (-0.25 + -0.09; Eq. 1), which is 
proportional to an odds of 0.71 (exp(-0.34); Eq. 2.), and a 
probability of 0.42 (0.71 / (1 + 0.71), Eq. 3), which all cor-
respond to the same observed pattern: a participant is 0.71 
times as likely to choose the high-demand option relative 
to low-demand option, or, equivalently, that a participant 
will select the high-demand option 42% of the time. This 
demonstrates an overall trend for participants to avoid the 
high demand option. 
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These techniques can be extended to a multilevel frame-
work to account for the nested structure of the data (for 
more detail, see S6b).  

Here,  represents the effort choice (0 or 1) on trial  for 
participant . Similarly,  corresponds to the value of X 
on trial i for participant j. Accordingly,  is the person-
specific log-odds for person  when  is equal to 0.  is 
the person-specific effect of  on Y (in log-odds) for per-
son . 

At the first level, participant ’s effort choice on trial 
are predicted from a linear combination of regression co-
efficients ( ) and trial-by-trial predictors (abstractly, ), 
shifted by an intercept term ( ). The left-hand side of 
the level 1 equation (Eq. 4) corresponds to the log odds of 
choosing the high effort option. 

As in the case of linear multilevel regression, Level 1 of 
equation 1 can be thought of as applying the standard (not 
multilevel) logistic regression to the data from each par-
ticipant. Doing so would yield two coefficients on the log-
odds scale unique to each participant—  and  described 
above. Conceptually, “averaging” both sets of coefficients 
(  and ) across participants would yield the fixed effects 
at level 2 ( ) in Eq. 4. In other words,  represents 
the average log-odds of  assuming  is zero for the 
average or typical person, and  represents the average 
influence of X on the log odds of  for the average per-
son. These fixed effects are the average of participant-spe-
cific effects in log-odds. This is different from alternative 
techniques that return population-averaged fixed-effects 
when applied to correlated or nested data (e.g. Generalized 
Estimating Equations; Hardin & Hilbe, 2014). 

 and  are estimated “averages” of participant-spe-
cific values in log-odds, but each participant will have co-
efficients that deviate from these average estimates. These 
deviations are captured by  and  in Eq. 4 and rep-
resent how much more or less a given participant’s inter-
cept or slope was from  and , respectively. These val-
ues play a central role in a multilevel framework, as they 
capture variation between participants. They are assumed 
to be normally distributed with mean zero and variance : 

. 
In this regard, the regression coefficients from Level-1 of 
equation 4 (the s) are outcomes in Level-2. For example, 
the expected value of a given  will be the sum of the av-
erage estimate, , plus the participant-level deviation, 

. 
Such a model can be fit in R using the glmer() function 

from the lme4 package (Bates et al., 2015; S2). First, a ran-
dom intercept only model is fit, which captures partici-
pants’ general preponderance for selecting the high effort 
tasks. In lme4 syntax, the model formula begins with ef-
fort_choice ~ 1, which asks R to fit a model where effort 
choice is predicted by its mean, the intercept, represented 
by a “1”. Additionally, we add (1|PID) to this equation, 
which reflects the random intercept (“1”) for each (“|”) par-
ticipant (“PID”) in our dataset. We then specify the data 

Code Box 1.  Input and Output from an Intercept-Only       
Logistic Multilevel Model of Effort-Option Choices       

frame that contains our variables, data.Ctl, and finally we 
indicate that the family = 'binomial', which instructs R to 
fit a logistic regression model when it detects that the out-
come variable is binary. 

Looking at the “Fixed effects” section of the output in 
Code Box 1, the intercept ((Intercept) in the output) is 
-0.33, which represents the average log-odds of choosing 
the high demand option for the typical person. This value 
can be converted to a probability using Eq. 2 and 3, which 
yields a 42% chance of choosing the high-demand option, 
which, consistent with past work, shows that, on average, 
people avoid high-demand options more often than chance 
(Kool et al., 2010; Patzelt et al., 2019). 

Additionally, under the “Random effects” section of the 
output, the variance of participants’ choices around this 
grand mean ( , Variance in the output) is 0.76. This esti-
mate is a quantification of the variability across individual 
participants. To gain a better intuition for this value, we 
can convert it from a variance to a standard deviation by 
taking the square root:  Since we assume 
normality roughly 95% of participants will have log-odds 
of choosing the high effort options within 

 Converting 
these values into probabilities using Eq. 2 and 3, 95% of 
participants will choose the high effort option between 11% 
and 80% of the time. Thus, while the typical person avoids 
effort, some prefer it. Additionally, a researcher could vi-
sualize this variability by plotting the predicted partici-
pant-specific choice proportions (S3). To graphically depict 
this variance, we can extract the intercept for each partici-
pant from the model. These values are known as “empirical 
Bayes estimates” and are a weighted combination of per-
son specific information and the average across all persons 
( ). The EB estimates for persons with more informative 
data, e.g., from completing more trials, would be closer to 
their person-specific estimates. While EB estimates for per-
sons with less informative data would be closer to the aver-

Approaches for Quantifying the ICC in Multilevel Logistic Models: A Didactic Demonstration

Collabra: Psychology 4

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/10/1/94263/812146/collabra_2024_10_1_94263.pdf by guest on 15 M

arch 2024

https://collabra.scholasticahq.com/article/94263-approaches-for-quantifying-the-icc-in-multilevel-logistic-models-a-didactic-demonstration/attachment/197244.png?auth_token=ki6On9Z8Rb3B3QWp6p1W


Code Box 2.  Extraction of the Random Effect from an        
Intercept-Only Model in R     

age across all persons ( ). The more trials a person com-
pletes, the more their EB estimates can be differentiated 
from the average across all persons. Alternatively stated, 
EB estimates reflect skepticism about differences between 
persons (or clusters more generally). Doing so we obtain a 
per participant measure of effort avoidance ( )—in other 
words, the fixed effect, -0.33 ( ), plus each participant’s 
deviation from this fixed effect ( )—which yields each 
participant’s estimated log-odds of choosing the high effort 
option. In R, this computation can be automated using the 
coef(logsitic_MLM0). 

The output of Code Box 2 shows the first 6 participants’ 
estimated log-odds of choosing the high-effort option. To 
emphasize how these values correspond to participant be-
haviour, we have visualized the correspondence between 
each participant’s estimated log-odds of choosing the high 
effort option and their actual proportion of high effort 
choices (Figure 2A). As can be seen, participants with 
higher estimated log-odds of choosing the high effort op-
tion also exhibited higher actual effort seeking behaviour. 
Notably, this relationship follows an “S-shaped” curve, 
which is the result of applying the logistic transformation 
discussed in Section 3 to the data (Eq. 1-3), allowing the 
log-odds to take both positive and negative values, whereas 
actual proportions are constrained to be between 0 and 1. It 
is important to note here that while above we have consid-
ered the fixed effects to be “averages” of person-level ran-
dom effects, this is only true in the transformed log-odds 
scale. When computing log-odds back to probabilities, the 
non-linearity of the transformation makes it so large dif-
ferences in log-odds correspond to only small differences in 
probabilities. For example, if we were to compare two (hy-
pothetical) participants with estimated log-odds of choos-
ing the high-effort option of 3 and 4 in terms of their raw 
probabilities, these values would correspond to probabil-
ities 0.95 and 0.98—a difference of 3%. Conversely, if we 
compare two participants with the same difference in log-
odds but lower absolute values, e.g., a participant with log-
odds 1 and another with log-odds 2, then the corresponding 
probabilities are 0.73 and 0.88—a difference of 15%. 

With this caveat in mind, we can also visualize between-
participant variation in log-odds. As can be seen in Figure 
2B, there is substantial variation in individual participants’ 
effort-avoidance behaviour. As demonstrated in our nu-
merical analysis above, a sizable proportion of participants 
demonstrate demand-seeking behaviour (red area in Figure 
2B), preferring the high-demand option to the low-demand 

option on average (across trials). These individual differ-
ences expand theoretical understanding, because past work 
has often taken the fixed effects estimates of effort avoid-
ance  as evidence for a general and ubiquitous cogni-
tive mechanism that aims to minimize effort exertion and 
maximize reward (e.g., Kool et al., 2010; Kool & Botvinick, 
2018). 

While visualizing these variations yields insight into the 
generality of the estimated fixed effect, it is useful for re-
searchers to quantify the degree to which variability in the 
data stems from individual differences versus within-par-
ticipant response noise (for example, Volpert-Esmond et 
al., 2018). In other words, in a multilevel context, it is im-
portant to distinguish between variability that stems from 
level-2 variance (i.e., differences between participants) and 
level-1 variance (variability within participants’ response). 
The former provides insight into the generality of our con-
clusions—e.g., are all participants effort avoidant and, if 
not, which ones are and which ones are not?—while the 
latter speaks to the degree to which our experimental ma-
nipulation yields reliable responses from participants—e.g., 
how stable is one’s aversion to effort over the course of 
the task? Generally-speaking, high within-person variabil-
ity would require more explanatory within-person predic-
tors, whereas high between-person variability would re-
quire a greater number of between-person predictors. With 
answers to these questions a researcher can move forward 
with model building. 

In the context of linear multilevel models, variability 
attributable to between- versus within-participant differ-
ences is relatively easy to compute and outputted by default 
in statistical software (see S6b), but this is not the case with 
logistic models. 

4. Challenges in Quantifying Variance in Logistic        
Multilevel Regression   

In a linear random intercept model, the total variance 
in the outcome is the sum of between and within variance 
components: , where  is the residual, 
within-person, variance (see S6b). As such, one can com-
pute the proportion of total variance accounted for by vari-
ations between individuals, —a value called the intra-
class correlation coefficient (ICC; a.k.a. variance partition 
coefficient), or simply , as the ratio of variation about indi-
viduals to the total variance:  (see S6b for more 
information). Conceptually, the ICC corresponds to the de-
gree of nesting in a dataset, or the importance of the cluster 
variable (the variable in which observations are grouped; 
here, participants) in explaining variance in the outcome 
(Goldstein et al., 2002). This is why computing the ICC usu-
ally the best first step for a multilevel analysis (McCoach & 
Adelson, 2010). In cases where the data are nested within 
participants, the ICC summarizes the degree to which the 
outcome variable is sensitive to individual differences. De-
spite that many introductory texts on multilevel modeling 
discuss logistic MLMs as “simple” extensions of linear mod-
els, the ICC cannot be computed in the same way, and in 
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Figure 2. Correspondence between estimated demand preferences in log-odds during the DST from a logistic              
multilevel model and empirical behaviour.      
The x-axis in both figures represents the fixed intercept of high effort choices plus each participant’s deviation from this fixed intercept. Values on the x-axis are on log-odds scale. In 
A, the y-axis shows the proportion of high effort choices, and each point represents a single participant. In B, the y-axis represents the kernel density of participants within each bin 
of the histogram. As we can see, there is sizable variability in estimated effort aversion (i.e., the probability, in log odds, of choosing the high demand option). For some participants 
(in the red shaded area), the log odds are positive, indicating a probability above 0.50—that is, a preference for higher effort tasks. 

fact not at all with the default output provided from lme4 or 
other commonplace multilevel modeling software. 

A key difference between linear and logistic multilevel 
models is that logistic models do not estimate a residual 
variance term, —that is, a term that represents within-
participant variability in the outcome. In a linear model, 
the residual variance term is the variance of deviations, 
negative and positive, from a Gaussian variable’s mean or 
prediction. In logistic models which use a Bernoulli dis-
tribution, the mean represents the probability of an event 
occurring. In turn, the variance of deviations about that 
mean/probability is entirely determined by the mean ac-
cording to the following equation2: 

, .42(1-.42) = .24. As a re-
sult, a subtle, but important, difference between linear and 
logistic multilevel models is that logistic models, which are 
based on the Bernoulli distribution, lack a residual variance 
parameter, . The level 2 variance, , is on the logit scale. 
The variance of the Bernoulli outcome as implied by the 
mean, however, is on the probability scale. As such, we can-
not combine the level-1 and level-2 variance to form the to-
tal variance denominator as is done in the standard compu-
tation of the ICC. 

These caveats have consequences for the interpretation 
of variance parameters in a logistic multilevel model. First, 
there is no straightforward value for the residual variance 
( ) that captures within-participant variation in the out-

come—and accordingly, lme4 does not provide one (the 
residual variance parameter when available would be 
printed under the Random effects section in Code Box 1). 
Thus, unlike a continuous outcome model, there is not a 
singular, “simple”, way to quantify the relative contribution 
of individual differences to variability in the data, and thus 
the degree of unexplained variance (Goldstein et al., 2002). 
Consequently, variance in the outcome cannot be decom-
posed into within and between components in a straight-
forward manner and the standard ICC formula cannot be 
used to create a ratio of between-participant variance to to-
tal variance. 

5. Within-Participant Variance and ICC in       
Logistic Multilevel Models    

References texts usually discuss one method of quanti-
fying the ICC in a logistic multilevel framework: the latent 
threshold method (e.g., Snijders & Bosker, 2011). However, 
other tested methods exist in the literature, and we review 
three additional approaches 1) the simulation approach, 2) 
linearization, and 3) the median odds ratio. While all four 
approaches attempt to quantify the degree of variability be-
tween people, they do not estimate the same exact statis-
tical quantity and will often return different values. As we 
will see, the first three approaches estimate the ICC in the 
(binary) outcome variable but they do so differently. The 

To demonstrate why this equation holds, let  be some binary variable coded as 0 and 1,  be the mean of the distribution of this vari-
able ( ), and be the equation for the variance. We begin by solving for  as follows: 

. Following the standard equation for computing variance, , keep-

ing in mind that  is already captured by  by virtue of it being a probability ( ) and , we can compute the variance 
around  as: . In this final form, we can see that the variance is just a restatement of . 
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median odds ratio, however, estimates a different value, 
the heterogeneity between people in terms of the odds of 
occurrence of a binary outcome variable—i.e., the median 
odds ratio that would be observed if multiple random sam-
ples were drawn from the population. After illustrating how 
to implement and interpret each method in R step-by-step, 
using the random intercept only model fit as an example 
above (logistic_MLM0, see Code Box 1), we summarize the 
differences between techniques (see Table 1). 

Latent Threshold Approach    

The simplest and most popular method of calculating 
the ICC in a logistic MLM is to assume that the within-clus-
ter variation is equal to the variance of a logistic distribu-
tion with a scale parameter equal to one, yielding the value 

 (Goldstein et al., 2002; Snijders & Bosker, 2011, p. 440). 
Using this approach then, the ICC is a quantification of the 
proportion of variance in (latent) logit units attributable to 
between-person differences. 

This method arises from a common formulation or data 
generation mechanism for binary regression models. We 
begin by assuming a continuous outcome regression model, 
i.e. a weighted sum of predictors and an error term.3 How-
ever, the continuous outcome is unavailable, and instead 
we have a dichotomized version of the variable. Under this 
formulation, binary regression models attempt to retrieve 
the parameters or regression coefficients of the underlying 
continuous variable regression. Since the continuous vari-
able is unavailable, we make certain “identification” as-
sumptions to permit model estimation. For logistic regres-
sion, the relevant assumption is that the error term in the 
continuous variable regression follows a standard logistic 
distribution i.e. it has mean 0 and variance  (Goldstein et 
al., 2002). 

Applying this formulation to the data at hand, we may 
assume a continuous distribution of values across partic-
ipants, and participants with higher values have greater 
preference for high effort tasks. The exact preference value 
of a participant is a weighted combination of their predic-
tors and the logistic error term. When this preference value 
exceeds some threshold, that varies by participant, the par-
ticipant chooses the high effort task. A random-intercept 
multilevel logistic regression returns the variation across 
persons, , and we assume the variation within persons to 
be fixed at . At which point one can calculate the ICC as 
a ratio of the variance component of interest and the total 
variance,  (Goldstein et al., 2002). 

In R, we can compute the ICC this way as follows (S4a): 

Code Box 3.  Computation of the ICC using the Latent        
Threshold Method   

In the Code Box above, The VarCorr command extracts 
the random variance components from a fitted model (here 
logistic_MLM0, i.e., the value .7554 from Code Box 1) . 
Alone, this yields a variance component per grouping vari-
able and per number of random variance parameters 
( ) specified in the model. In our case, we have 
one grouping variable, PID, and so we specify that we are 
interested in this the random intercept variance for this 
group using $PID[1]. We then use this value to compute the 
latent threshold ICC as described above. Executing the code 
in Code Box 3 yields an ICC = 0.19—that is, nearly 20% of 
variance in effort avoidant behaviour is attributable to dif-
ferences between individuals or, conversely, 80% to within-
participant variation. 

In contexts where the modeler is primarily interested 
in a continuous outcome, but only has access to a di-
chotomized variable, this formulation for the ICC is ideal. 
For example, if a researcher were interested in a presum-
ably continuous, but inaccessible, construct of effort aver-
sion, then effort-related choices in the DST might be seen 
as a dichotomous representation of this latent construct. It 
is worth noting, however, that the assumption that unob-
servable continuous variables masquerade as dichotomous 
ones may be untenable in many experimental contexts. 
While effort choice could be thought to reflect a continuous 
underlying distribution of preference, some may think of it 
as a truly dichotomous outcome—a participant chooses ei-
ther one option or the other—in the same way that a person 
is either a bachelor or not. In these cases, it may be desir-
able to assume responses as truly dichotomous when calcu-
lating the ICC. 

Simulation Approach   

As an alternative to the latent threshold approach, Gold-
stein et al. (2002) recommended a simulation-based ap-
proach as a more general means of estimating the ICC 
on a binary (observed) scale. Differently from the Latent 
Threshold approach which focuses on the logit scale, this 
is an ICC measure on the probability scale. The key idea is 
to compute the Bernoulli variance over a large number of 
simulated datasets as a proxy for the estimate of residual 
variance. This computes the ICC from two sets of values: 
first, the person-level estimated probabilities, which are 
obtained from the fixed and random effects of a fit model, 
and second, a measure of within-person variance based 

This formulation is mathematically equivalent to the GLM formulation for binary regression models based on the Bernoulli distribution, 
with a linear model for probabilities on an unbounded scale. 
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on the Bernoulli variance seen above, 
, which is averaged across people. 

These two components can then be used to compute the 
ICC. In practice, this approach is done in four steps. 

Implementing this approach in R (S4b): 

Code Box 4.  Computation of the ICC using the       
Simulation Method   

At the start of Code Box 4, we use the VarCorr function 
to extract the between cluster variance, as before (Code Box 
3). We then extract the fixed intercept (  in Eq. 4) using 
the fixef command and specify the number of simulations, 

. We then follow the steps described above to compute 
the ICC using the simulation method. 

Executing the code in Code Box 4 yields an ICC of 
0.14—that is, 14% of total variance in effort avoidance owes 
to differences between individuals. Notably, this estimate is 
smaller than that obtained by the latent threshold method. 

In the latent threshold method, the ICC is computed en-
tirely on the logit scale, and the residual variance para-
meter is assumed known. In the simulation approach, both 
the between- and within-participant variances are com-
puted on the probability scale—the calculations include the 
fixed effects. Hence, the fixed effects shift the mean of the 
probability in ways that affect the variance of probabili-
ties—which in turn increase at a slower rate than the vari-
ance on the logit scale. These differences lead to discrepan-
cies in ICC estimates between the methods. 

It is worth bearing in mind that because simulated de-
viations from the fixed effect are based on the fixed effects 
themselves, estimates of the ICC in models with additional 
covariates (i.e., not a null model) will depend on the co-
variate patterns. That being said, differences in the ICC as-
sociated with different covariate values may themselves be 
of interest, though this process increases in complexity as 
more covariates are added. 

Linearization  

Instead of assuming a non-linear (logistic or Bernoulli) 
variance, it is possible to estimate a linear approximation 
of the logistic multilevel equation and use the variance 
from this approximation. Thus, linearization attempts to 
approximate the ICC otherwise obtained via simulation 
method (e.g., using the Simulation approach)—i.e., one in 
which variance is calculated on the probability scale. Gold-
stein et al. (2002) proposed the following approximation for 
the null model, where  refers to the estimated probability 
that . 

This approximation works for the case of the null model 
specifically (i.e., the model for which we typically compute 
the ICC), but Goldstein’s et al. (2002) approach may also 
work in the presence of multiple predictors (a topic we re-
turn to later). Considering the null model, then the variance 
is equal to a combination of level-1 and level-2 variance, as: 

where  reflects the model-estimated probability of choos-
ing the high effort option at the mean of the random in-
tercepts ( ), and  is the Bernoulli implied variance. 
is the variance of the level-2 outcomes as predicted by the 
model, including information about each person ( ; i.e., 
the variance in the (null) model-estimated value of choos-
ing the high effort option for each participant). The total 
estimated variance is the sum of these values. This variance 
then appears in the denominator of the standard ICC calcu-
lation. Note that the equation above is a more general form 
of the linearization equation, as the present model (logis-
tic_MLM0) is a null model and thus only contains one predic-
tor ( ). In R (S4c): 

1. From an already fitted model (logistic_MLM0), simu-
late a large number ( ) of normally-distributed par-
ticipant-level random effects using the fitted model’s 
random intercept variance estimate, 

, where  refers to a single simula-
tion,  and  refers to a particular (simu-
lated) participant. 

2. For each random effect, compute predicted probabil-
ities for each level 1 observation, , according to 
the model’s fixed effects ( ) and the random effect 
obtained in step 1 (hence the  subscript). Using the 
example model, logistic_MLM0, predicted probabili-
ties of selecting the high-effort option on each trial 
would be computed as follows: . 

3. For each of these predicted probabilities, compute 
the level 1 variance according to a Bernoulli distribu-
tion: . 

4. The ICC is then estimated as the ratio of participant-
level variance in predicted probabilities over total 
variance, which itself is composed of cluster-level 
variance and average level-1 variance: 

 . 
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Code Box 5.  Computation of the ICC using the       
Linearization Method   

As before, at the start of Code Box 5, we extract the ran-
dom effects and fixed effects using the VarCorr and fixef 
functions in R. Following this, we follow the steps described 
above to compute the ICC. Executing Code Box 5 yields 
an ICC of approximately 16%—closer to the simulation 
method and lower than the latent threshold approach. 

While this linearization method does not require simu-
lation, much like the simulation approach, its value is con-
ditional on the covariate structure. That is, the ICC will be 
conditional on the values of the predictor variables. We dis-
cuss ways around this limitation later, but it is at the discre-
tion of the modeler whether the unique ICCs for different 
patterns of covariates are of interest over a global ICC esti-
mate.4 Another consideration is that when  is large, the 
linearization transformation will be applied to values along 
a broad span of the logistic curve, which is non-linear and 
poorly approximated by a linear function. As such, the lin-
earization method may only be appropriate when  is rel-
atively small. 

Median Odds Ratio    

The methods reviewed so far have aimed to compute the 
ICC for logistic multilevel models using techniques analo-
gous to linear models. An alternative approach is to aban-
don the framework of the ICC and instead compute a mea-
sure of participant-level variation that more readily 
captures the binary nature of the data, without the need 
for an estimate of within-participant variance. That is, a 
method in which the measure of variation is expressed in 
terms of odds, which is a more common scale for interpret-
ing binary data models. Accordingly, the median odds ratio 
(MOR), proposed by Merlo et al. (2006), represents median 

participant-level variation on the odds ratio scale. Con-
ceptually, the MOR represents the median odds of success 
across every pairing of participants in the dataset. Imagine 
that every participant is paired to each other participant in 
the sample and their odds of choosing the high demand op-
tion are calculated according to their participant-level de-
viation from the fixed intercept. The ratio of these pairs 
of odds are then computed, with the higher odds always 
placed in the numerator. Doing this for all pairs of partic-
ipants would yield a distribution of odds ratios, the me-
dian of which would be the MOR. If the MOR is equal to 
1, it would suggest no differences between participants (all 
participants are equally effort-avoidant; that is, they avoid 
high effort stimulus  log-odds of the time). If the MOR 
is considerably larger than 1, it would suggest sizable indi-
vidual differences. As such, the MOR is a useful technique 
for those interested solely in the between-participant ef-
fects, but offers no direct extension to quantify within-par-
ticipant variability. 

Practically, it is not necessary to carry out these compu-
tations in full, because the MOR can be readily computed 
using the following equation (see Merlo et al., 2006): 

where  is the cumulative distribution function of a stan-
dard normal distribution, and  is roughly equal to 
0.67 (see Larsen & Merlo, 2005 for a derivation of this equa-
tion). In R, the MOR can be computed as follows (S4d): 

Code Box 6.  Computation of the MOR.     

Using the data at hand, the MOR is 2.29, which means 
that the median odds of avoiding the high-demand option 
increased by 2.29 times when randomly comparing two par-
ticipants. In other words, the odds of effort avoidance in 
the present sample can vary, in median, by 2.29. Relative 
to the original estimate of between-participant variability 
from the output of fitting logistic_MLM0 ( ), the MOR re-
flects a summary of how variation in effort aversion when 
comparing random subsets of participants, whereas  is an 
estimate of average variability in effort aversion across par-
ticipants. 

Nakagawa et al. (2017; 2013) have proposed a similar method for estimating the coefficient of determination ( ) in generalized multi-
level models. In the case of binary outcomes, this method estimates the proportion of variance explained in a model. This value is pro-
portional to the ICC when considering null models, as we do here (Snijders & Bosker, 2011), and in fact the latent threshold ICC is ex-
actly equal to the conditional R-squared value, assuming a null model. Accordingly, we do not review it in detail here, but point readers 
to Nakagawa’s (2013; 2017) work on topic. Notably, one can estimate  for models with other families of multilevel regression than bi-
nomial (e.g., Poisson), which may be of interest to some readers (see for instance the MuMIn package in R for an implementation of this 
method). 
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Table 1. Advantages and Disadvantages of Different Techniques for Computing ICC in Logistic MLM.             

Method Estimated ICC for 
logistic_MLM0 

Pros Cons 

Latent 
Threshold 

0.19 

Simulation 
Goldstein et 

al. (2002) 

0.14 

Linearization 
(Goldstein et 

al., 2002) 

0.16 

Median 
Odds Ratio 

(Merlo et al., 
2006) 

2.29 
(in median odds 

scale) 

While the MOR is unlike the other approaches discussed 
thus far, it is worth emphasizing its conceptual similarity 
to the ICC (and thus its inclusion in this tutorial). Much 
like the ICC, the MOR provides information about individ-
ual variability between participants impacts the odds of the 
outcome variable being equal to 1 (in this case, choosing 
the high effort option). Put simply, both the MOR and ICC 
quantify how important the participant is in determining 
the outcome. Moreover, like other ICC values (and holding 
total variance constant), larger MOR values imply reduced 
within-person variability, and vice-versa. In this respect, 
the MOR and the ICC convey similar information. Never-
theless, unlike the ICC, the MOR is not expressed as a pro-
portion. As such, this method offers no quantification of 
residual, within-participant, variance, which could be of in-
terest to experimental psychologists. 

6. Estimating Uncertainty about the ICC With        
Bootstrapping  

In the previous section, we outlined four methods for 
quantifying variation in logistic multilevel modeling, as 
well as some relative advantages and disadvantages of each 
method. However, quantifying uncertainty around any 
given estimate of the ICC, which in our in our example 
varies between 15-20% depending on the method, is not 
routinely discussed in the literature. 

To quantify uncertainty in the ICC, Austin and Leckie 
(2020) proposed using a parametric bootstrapping process 
with percentile confidence intervals. In its simplest form, 
this process unfolds in three steps: 

Code Box 7.  Example of bootstrapping procedure to      
obtain sampling distributions of the ICC, using the         
latent threshold method.    

In principle it would be possible to hand-code a boot-
strapping procedure to estimate these values using the in-
formation provided in Code Boxes throughout this tutorial 
(and, for the intrepid reader, we provide code to do so at 
https://anonymous.4open.science/r/logisticicc-F6C8/ and 
S5b). For ease however, we provide a function that draws 
bootstrapped samples of the ICC using the methods speci-
fied above. Below, we use this function to obtain 100 boot-
strapped estimates of the ICC, using the latent threshold 
method (S5a). 

bootstrap_icc() takes as arguments a model, here, logis-
ticMLM0, a grouping variable, here PID, a string represent-
ing one of the methods for computing the ICC described 
above, here icc_thre, and the number of samples to draw, 
B. Applying this yields a bootstrapped sampling distribution 
that characterizes uncertainty around the point estimate. 
For instance, while the point estimate for the latent thresh-
old ICC in the present data was 0.19, the bootstrapped con-
fidence interval suggests the ICC estimates most compati-

• Simple 

• Popular 

• Applicable to all models 

• Ideal when goal is to model the la-

tent continuous variable 

• Unintelligible estimate when latent continuous 

variable assumption is not tenable 

• Provides direct estimate of within-

participant variance 

• Estimate should be meaningful for 

most applications 

• Cannot be computed by hand 

• Estimates depend on covariate structure 

• Closed-form solution—no simula-

tion required 

• Provides estimate of (conditional) 

within-participant variance 

• Estimate should be meaningful for 

most applications 

• Estimates depend on covariate structure 

• Is inappropriate when random intercept variance 

is high 

• Readily interpretable on the same 

scale as odds ratios 

• Closed-form equation 

• Not expressed as a proportion, like other mea-

sures of between-participant variance 

• No within-participant variance term 

1. Simulate many datasets from the original logistic 
model, randomly sampling random effects from a 
normal distribution centered at the estimated mean 
and variance from a fit model. 

2. Compute the quantity of the interest (the ICC or 
residual variance measure in this case). 

3. Summarize these data (e.g., by taking the mean, com-
puting a 95% interval, etc.) to make statistical infer-
ences using the resulting sampling distribution. 
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Table 2. 95% Intervals for Bootstrapped Statistics (100       
iterations)  

Variable Quantile 

2.5% 97.5% 

ICC 
(Latent Threshold) 0.11 0.26 

ICC 
(Simulation) 0.11 0.23 

ICC 
(Linearization) 0.10 0.22 

MOR 1.83 2.77 

ble with the current data range between 0.11 and 0.26 (see 
Table 2). In other words, anywhere between approximately 
a tenth to a quarter of the variance in effort avoidant be-
haviour is attributable to differences between individuals. 

Notably, unlike confidence intervals calculated using 
standard errors, the lower bound of these bootstrapped 
confidence intervals will never go below 0 in the case of the 
ICC, or 1 in the case of an MOR, because these are the low-
est possible values these metrics can take. Accordingly, 1 
for the MOR and 0 for the ICC might be very conservative 
thresholds for minimal participant-level variation. The ad-
vantage of the bootstrap approach is that researchers can 
set their own lower bound for what constitutes minimal 
heterogeneity in the outcome measure and explore the 95% 
interval relative to this threshold. 

The 95% interval of bootstrapped distributions for MOR, 
and ICC using all of the methods discussed thus far from 
100 samples are summarized in Table 2. Regardless of the 
measure, there are substantial individual differences in ef-
fort avoidant behaviour, suggesting that not all people are 
equally averse to effort action—a finding echoed by recent 
work exploring individual differences in cognitive effort in-
vestment, which speaks to the theoretical insights examin-
ing the random effects can provide (Otto & Daw, 2019; San-
dra & Otto, 2018). 

7. Computing the ICC and MOR in Models with          
Predictors and Random Slopes     

Thus far, the tutorial has focused on a null model with 
no predictors and random intercepts only. We recommend 
this as a first step to modeling building because it provides 
a starting point to understanding the variability in the out-
come. Researchers are then likely to proceed to adding pre-
dictors and estimating random slopes. In this section we re-
view how to use the methods we have discussed with more 
complex models. 

Models with Within-Participant Predictors     

First, we demonstrate how to estimate a model with a 
fixed within-participant predictor, trial number, and ran-
dom intercepts. Code Box 8 shows the regression equation 
now includes trial0, which captures the number of trials 

Code Box 8.  Multilevel logistic model with one      
predictor, random intercepts, and fixed slopes.       

that have elapsed since the beginning of a block in the DST 
(where a block is a subset of trials). The predictor has been 
centered at the median and scaled to be between 0 and 1. In 
line with past work (Kool et al., 2010), we consider whether 
participants’ desire to avoid higher effort tasked increased 
as their exposure to the experimental tasks increased. The 
fixed intercept, , reflects the average log-odds of select-
ing the high-effort tasks when trial0 is equal to zero for 
the typical participant, and the fixed slope, , reflects the 
change in log-odds from the beginning to the end of the 
task for the typical participant (from when trial0 equals 0 
to when it equals 1). As before, we have specified that the 
intercept will vary per participant in a normally distributed 
fashion, with random variance . 

The simulation and linearization approaches for com-
puting the ICC described above rely on an estimate of in-
tercept variance ( ), which depends on the value of the 
intercept in a model, which in turn depends on the covari-
ate structure. For these approaches, if researchers are inter-
ested in various points, (e.g., when covariate 1 is high and 
covariate 2 is low, when both covariates are high, when both 
are low, and so on), they need to calculate multiple ICCs. 
In Figure 3A, we plot the ICC at each value of trial0 us-
ing the linearization method, which demonstrates how the 
ICCs changes as we move along different values of the co-
variate. Conversely, both the ICC computed using the latent 
threshold approach and the MOR implicitly assume fixed 
residual variance and will be assumed to be appropriate for 
any covariate structure. In the presence of covariates, the 
latent threshold ICC and MOR return values that are ad-
justed for the covariates. For example, the latent threshold 
ICC functions similarly to the residual ICC in linear mul-
tilevel models in that it is the latent variance attributable 
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Figure 3. Linearization-based ICC in models where (A) within-person and (B) between-person predictors are             
included.  
In A, the x-axis represents the trial number at which the ICC was computed. In B, the x-axis represents the experimental condition at which the ICC was computed. The y-axis shows 
the resultant estimated ICC. The red dotted line shows the estimated ICC using the averaging method discussed in the main text. Together, these figures illustrate the problems that 
accompany estimating the ICC when predictors are included in a logistic multilevel model. 

to differences between individuals after accounting for the 
variance attributable to covariates.5 

Another alternative to proliferation of simulation and 
linearization ICC values with increasingly complex covari-
ate structures is to calculate the ICC at the average predic-
tion of the observed data on the logit scale. To do so, the 
average predicted value from the model is used in place of 
the combination of fixed effects. The benefit of this method 
is that it is simpler while the cost is that it cannot capture 
the relative contribution of within- vs. between-participant 
variance at different levels of the predictor. Thus, faced 
with a model like our logisticMLM1 we must decide if we 
want to compute the ICC at different levels of the predic-
tor—at the beginning vs. end of a block, for instance—or 
compute a global ICC at the average—here, the middle of a 
block. We take the latter approach by centering the predic-
tor at the median, but the former approach could be taken 
if trial0 was recentered to the beginning or end of the task. 

As an example, we can leverage the averaging approach 
described above for the linearization method described in 
Section 5 to compute a single ICC for logisticMLM1 esti-
mated above, which yields an estimate of the ICC that is 
close to the estimate for the intercept-only model in Sec-
tion 5 (ICCaverage = 0.1554; ICCnull = 0.1552). As mentioned 
however, this estimate of the ICC will only be valid for the 
middle of the block (see Figure 3A). This is implemented in 

Code Box 9.  Simulation method for a model with       
within-person predictors   

the icc_lin() function provided in the Supplemental Mate-
rials (S6d; see Code Box 9). 

As an aside, in the case of the simulation method, this 
averaging approach can be extended via numerical integra-
tion to estimate the moments of the logit-normal distrib-
ution, for which, for example, the simulation method can 
be thought of as a method for approximating. This yields 
numerically very similar estimates of the ICC without the 
need for simulation. We describe this Numerical Integration 
Approach in the Supplemental Materials (S6d) and provide 
a separate function for it. 

Models with Between-Person Predictors     

The same issues apply when a level 2, in our example a 
between person, predictor is included. In Code Box 10, we 
fit a logistic multilevel model where effort choices are pre-
dicted by experimental condition: control (0) or stress (1). 
The original purpose of Bogdanov and colleagues’ (2021) 

Since the residual variance is fixed across logistic models, estimated model parameters are automatically scaled across models to reflect 
changes in residual variance across models (an issue referred to as non-collapsibility or unobserved heterogeneity depending on the lit-
erature; Greenland et al., 1999; Mood, 2010). For example, if one extends a random-intercept model by including within-participant pre-
dictors that do not explain any participant level variance (e.g. person-mean centered predictors), the intercept variance ( ) would in-
crease from the random-intercept, producing a larger latent threshold ICC or MOR since the residual variance has reduced from the 
earlier model. 

5 
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Code Box 10.  Multilevel logistic model with one      
between-person predictor and random intercepts      

Code Box 11.  Linearization method for a model with       
between-person predictors   

study was to examine the role that acute stress played on 
effort avoidance. The model below tests this prediction, ex-
amining average effort avoidance rates depending on if par-
ticipants were stressed or not before completing the DST. 

Just as with the continuous predictor example above, the 
intercept and the ICC using the simulation and lineariza-
tion approaches will depend on the value of Condition. We 
illustrate this in Figure 3B. In Code Box 11, we compute the 
averaged ICC using the linearization method. As before, we 
obtain a value not too far from, though slightly lower than, 
the linearized ICC computed for logisticMLM_0 (ICCnull = 
0.16). 

As before, these issues do not apply to the latent thresh-
old ICC nor the MOR, which will be identical regardless of 
the covariate pattern. 

Notably, while continuous predictors may yield an un-
wieldy number of possible ICCs, categorical variables may 
have very restricted covariate patterns. As a result, re-
searchers may in fact be interested to examine how person-
level variability in the intercept (indexed by the ICC) varies 
per categorical conditions. Moreover, when a model in-
cludes categorical predictors, the average prediction may 
not reflect any actual case in the data, such it may be wiser 
to consider the ICC at specific values of the categorical pre-
dictors. 

Code Box 12.  Multilevel logistic model with one      
predictor, random intercepts, and random slopes.       

Models with Random Slopes     

Finally, a modeler may be interested in estimating how 
much the influence of a level 1 predictor varies per partic-
ipant. For example, we might expect that over the course 
of a block, participants become increasingly effort averse, 
but that some participants remain steadfast in their initial 
rate of effort aversion while others rapidly reject all effort-
ful tasks after only a few trials. This type of conditional be-
tween-participant variability can be modeled using random 
slopes. In Code Box 12 we estimate logistic_MLM2 by adding 
(trial0 | PID) to estimate the slope variance across people. 
As can be seen in Code Box 12, a new random effects vari-
ance is included, which encodes how variable different par-
ticipants’ effort preferences are to the trial number of the 
task. 

Though adding random slopes to the model and com-
puting the ICCs in the manner we have demonstrated is 
relatively straightforward in lme4, there is debate in the 
literature about whether the ICC should be computed for 
models that contain random slopes. For instance, Kreft & 
De Leeuw (1998) state that “The concept of intra-class cor-
relation is based on a model with a random intercept only. 
No unique intra-class correlation can be calculated when a 
random slope is present in the model.” (p. 63). Conversely, 
Goldstein et al. (2002) highlight that it is, in theory, pos-
sible to estimate the ICC for a model with random slopes, 
but that doing so will be conditional on the pattern of co-
variates and that doing so changes the interpretation of the 
ICC—and its components: between- and within-participant 
variation—to a point that it no longer serves the same pur-
pose of assessing the relative contribution of between- ver-
sus within-participant variation to total variance. We will 
not settle this debate in this tutorial and to our knowledge, 
no work exists that tackles this issue in logistic multilevel 
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Figure 4. Article Flowchart.   
Readers are encouraged to use this flowchart to direct and their selection of an estimate of ICC (and MOR) for logistic multilevel modeling. 

models. For now, we recommend implementing the ICC us-
ing the techniques described above for models with random 
intercepts, and we caution that the interpretations we’ve 
provided do not hold for models with random slopes. 

8. Conclusion   

Calculating the ICC to describe the effect of clustering in 
the dependent variable is a best practice for the early stages 
of multilevel model building. However, for logistic models, 
this is not straightforward to do, with popular programs 
not outputting the necessary estimates. In this tutorial, we 
have reviewed four methods for computing estimates of be-
tween- and within-participant variability from logistic mul-
tilevel models and demonstrated how to calculate the ICC. 
We have highlighted relative advantages and disadvantages 
of each technique and provided R code to compute these es-
timates, both manually (using didactic code from the Code 
Boxes or the supplement to reproduce all analyses reported 
herein) or functionally (using the function code provided 
in the repository associated to this paper and described 
in S6d). Finally, we reviewed bootstrapping techniques to 
quantify uncertainty about these variance estimates. 

Here, we focused on modeling binary data using a model 
with a logit link function, alternative link functions, like the 
probit function, are commonly employed. The techniques 
to quantify the ICC (excluding the MOR, because it is in 
odds ratios) described could be used for a probit model. 
That is, in a probit model, the value of the residual vari-
ance in the ICC using the threshold approach would be 1, 
rather than , in the simulation approach, the mean func-
tion from inverse-logit function would change to a normal 
cumulative density function, and for the linearization ap-

proach, the formula presented in equations 5 and 6 would 
also change. 

At this point, readers may ask which method is the best 
overall, or which method they should use for a specific 
scenario. To help arbitrate between the different methods 
presented here, we point readers to Table 1 and Figure 4 
for practical considerations. Additionally, the decision be-
tween methods might also be made on theoretical grounds. 
If researchers view the observed binary outcome as the re-
sult of a measurement process that dichotomized a contin-
uous variable/trait, then the latent threshold approach is 
appropriate. If they are instead concerned only in binary 
preference, the linearization or simulation methods should 
be considered. Finally, if researchers wish to express be-
tween-person heterogeneity in terms of odds, the MOR is a 
good option. 

Finally, another way to identify which measure to report 
is to consider the type of effect size the researcher plans 
to report. If the researchers’ primarily focus on log-odds 
and odds-ratios, then the latent approach and MOR are ad-
equate, because they are already expressed in that scale. If 
the researchers are instead interested in transforming ef-
fects into probabilities or attempt to communicate effects 
on the probability scale (i.e., on the observed scale), then 
the simulation and linearization approaches may be more 
appropriate. 

Overall, making these approaches easier to implement 
will enable researchers to investigate variability in their bi-
nary data and expand their theoretical considerations be-
yond effects in the aggregate. 
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