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Abstract
The notion that humans avoid effortful action is one of the oldest and most persistent in psychology. Influential theories of 
effort propose that effort valuations are made according to a cost-benefit trade-off: we tend to invest mental effort only when 
the benefits outweigh the costs. While these models provide a useful conceptual framework, the affective components of 
effort valuation remain poorly understood. Here, we examined whether primitive components of affective response—posi-
tive and negative valence, captured via facial electromyography (fEMG)—can be used to better understand valuations of 
cognitive effort. Using an effortful arithmetic task, we find that fEMG activity in the corrugator supercilii—thought to index 
negative valence—1) tracks the anticipation and exertion of cognitive effort and 2) is attenuated in the presence of high 
rewards. Together, these results suggest that activity in the corrugator reflects the integration of effort costs and rewards 
during effortful decision-making.
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In 1949, Zipf (2016) contended that he had discovered a 
unifying principle that governed “every individual’s entire 
behaviour”: the principle of least effort, which states that, 
in all situations, “a person will strive to minimize the prob-
able average rate of his work-expenditure” (see also Hull, 
1932; Ballé, 2002). While the least effort principle remains a 
ubiquitous and influential proposal in psychology, a key but 
unresolved question remains: what makes effort so aversive 
to humans? In other words, what phenomenological quality 
of cognitive effort exertion so effectively discourages people 
from taking cognitively demanding courses of action?

Contemporary theories of effort-based decision-making 
posit that an individual’s decision to allocate cognitive effort 

is governed by a cost-benefit trade-off (Shenhav et al., 2017), 
such that individuals tend to allocate effort to a particular 
task if the benefits of effort exertion (e.g., reward incen-
tives) outweigh its costs (Kool and Botvinick, 2018; Kur-
zban, 2016; Shenhav et al., 2013; Silvetti et al., 2018). An 
important tenet of this view is that the exertion of effort is 
intrinsically costly, such that it discourages pursuing effort-
ful courses of action (Kool et al., 2010; Kurzban et al., 2013; 
Otto and Daw, 2019; Vogel et al., 2020), whereas rewards 
counteract this default tendency and mobilize effortful pro-
cessing (Kool and Botvinick, 2018; Silver et al., 2021). 
While the source of this intrinsic effort cost is debated 
(Musslick and Cohen, 2021; Petitet et al., 2021; Holroyd & 
McClure, 2015), most theories converge in assuming that 
the subjective cost of effort increases monotonically with 
objective task demand level.

An important, but unexamined assumption of the cost-
benefit account of effort valuation is that the exertion of 
cognitive effort is actually experienced as an aversive phe-
nomenon (Kurzban, 2016; Saunders et al., 2017). Through 
the lens of cost-benefit effort evaluation, if effort is indeed 
aversive, we would expect that individuals’ affective evalu-
ations of effort exertion reflect the costs (i.e., task demand) 
and benefits (i.e., reward incentives) of the situation at hand. 

 * Sean Devine 
 seandamiandevine@gmail.com

1 Department of Psychology, McGill University, Montreal, 
Canada

2 Department of Experimental Psychopathology 
and Treatment, Behavioral Science Institute, Radboud 
University, Nijmegen, Netherlands

3 Donders Institute for Brain, Cognition and Behaviour, 
Radboudumc, Nijmegen, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-023-01095-3&domain=pdf
http://orcid.org/0000-0002-0445-2763


 Cognitive, Affective, & Behavioral Neuroscience

1 3

In other words, if the aversive quality of mental effort stems 
from the experienced output of motivational systems direct-
ing behavior towards appropriate actions (Kurzban et al., 
2013), the “net utility” of an action—or at the least, its con-
stituent elements, benefits and costs—should manifest in an 
individual’s affective evaluation of a situation.

Affective states can be characterized by two distinct, 
but inter-related, primitive motivational signals—valence 
(unpleasantness versus pleasantness) and arousal (inten-
sity)—which are thought to direct approach and avoidance 
tendencies towards stimuli (Russell, 1980). Accordingly, 
influential theories of emotion posit that these affective sig-
nals play an adaptive role in decision-making, responding 
to salient features of one’s environment and directing us 
towards appropriate actions (Moors et al., 2013; Scherer, 
2009). With respect to cognitive effort, affective evaluations 
could play a role in adaptively guiding cognitive process-
ing away from undue strain by representing the “costs” of 
increased effort in terms of negative valence (Kurzban et al., 
2013). Indeed, supporting the idea of a linkage between 
effort evaluation and affective response, previous work sug-
gests that affective states can modulate effortful control pro-
cesses (Dreisbach and Fischer, 2015; van Steenbergen, 2015) 
and that the mobilization of cognitive control processes is 
affectively tagged: actions that tax control and stimuli that 
signal high demand appear to be evaluated as more affec-
tively negative (Vermeylen et al., 2019; Fritz and Dreisbach, 
2013). Conversely, positively valenced stimuli promote more 
flexible decision-making strategies (Dreisbach and Goschke, 
2004)—possibly by reducing the cost of such flexibility 
(Dreisbach, 2006). Negatively affective stimuli can trigger 
control costs (e.g., increased response times and reduced 
accuracy) akin to cognitive effort investment instead, even in 
the absence of objective demand manipulations (Dreisbach 
and Fischer, 2012).

While these past studies suggest a potential linkage 
between affect and cognitive effort evaluation in a general 
sense, two important questions remained unanswered: 1) Do 
individuals’ affective evaluations of effortful tasks corrobo-
rate the idea that effort (both prospective and enacted) is 
experienced as aversive? 2) If so, do these affective evalua-
tions incorporate information not only about the costs, but 
also the potential benefits tied to effortful action?

One challenge for understanding the interplay between 
mental effort evaluation and affect is capturing momen-
tary affective responses under varying levels of prospective 
(or experienced) cognitive demand. Due in part to the fast 
(sub-second) time course of evaluative processing, affective 
responses often evince information that individuals do not 
have complete introspective access to or that may vacillate 
rapidly in the process self-report (Cunningham et al., 2008; 
Harmon-Jones et al., 2016). As such, the principal axes of 
affective response—valence and arousal—might be best 

understood by measuring rapid, pre-conscious physiologi-
cal responses using facial electromyography (fEMG) and 
skin conductance response (SCR).

A spate of work has demonstrated that activity in the 
zygomaticus major muscle—a muscle that extends from 
the cheekbone to the corner of the mouth and is responsi-
ble for smiling—reflects positive affect and correlates with 
subjective (i.e., self-reported) ratings (Lang et al., 1993). 
Conversely, activity in the corrugator supercilli muscles—a 
small muscle group close to the eyes, located at the median 
end of the eyebrow (Fig. 1B)—reflects negatively valenced 
emotion and, in turn, is believed to reflect the experience of 
negative affect (Fridlund and Cacioppo, 1986; Lang et al., 
1993; Larsen et al., 2003; van Boxtel, 2010). Critically, 
activity in these two muscles index positive and negative 
valence with high temporal resolution, affording measure-
ment of transient and often subtle affective responses (Heller 
et al., 2011, 2014; Topolinski and Strack, 2015). Notably, 
during task performance, corrugator activity appears to dif-
ferentiate between high and low concurrent demand (van 
Boxtel and Jessurun, 1993; Berger et al., 2020) and SCR—
indexing physiological arousal, or the intensity of emotional 
response—has been shown to relate to anticipatory effort 
evaluation (Botvinick and Rosen, 2009). While these stud-
ies suggest potential associations between effort exertion 
and physiological measures of transient affect, the affective 
components of cost-benefit evaluation of effort itself, which 
would presumably reflect the putative costs, benefits—and 
their potential integration—remain to be investigated.

Accordingly, in two experiments, we examined whether 
the anticipation and exertion of cognitive effort at varying 
levels of cognitive demand (i.e., costs) and under varying 
reward incentives (i.e., benefits) are reflected in in physi-
ological measures of affective response. To this end, we 
recorded fEMG activity and SCRs from participants while 
they performed an effortful arithmetic task (Vassena, Der-
aeve, et al., 2019a), in which we manipulated the level of 
cognitive demand (Experiment 1), and jointly manipulated 
demand and the reward incentive amount tied to correct 
responses (Experiment 2). Importantly, our task design tem-
porally separates anticipation of upcoming effort—signaled 
via cues—from concurrent effort exertion (Fig. 1), allowing 
us to dissociate between participants’ affective responses 
accompanying cost-benefit evaluation of the upcoming trial 
and effort exertion itself. In line with past work (van Box-
tel and Jessurun, 1993; Berger et al., 2020; Larsen et al., 
2003), we hypothesized that activity in the corrugator would 
correlate positively with demand level, whereas zygomati-
cus activity would negatively correlate with demand level, 
potentiated by reward incentive level. To foreshadow, we 
find that 1) corrugator fEMG activity—an index of nega-
tive affective response—tracks anticipated effort as well as 
concurrent effort exertion level, but more interestingly, also 
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reflects an integrated (or net) evaluation of the prospective 
costs (i.e., demand) and benefits (i.e., reward incentives) of 
the upcoming task during anticipation.

Experiment 1

Method

Participants

An a priori, power analysis revealed that 40 participants 
would yield 80% power (see Supplemental Materials). 
Accordingly, 44 healthy adult participants (40 females; aver-
age age = 20.50, SD = 1.88, range = 18-23) were recruited 
from McGill University's human participant pool. All partic-
ipants gave informed consent before testing and were com-
pensated with course credit. This procedure was approved by 
the McGill ethics committee (certificate number: 137-0816). 
Technical issues precluded the analysis of one participant’s 
physiological data.

Procedure

The experiment was conducted in one two-hour session. 
Participants completed 200 trials of an effortful arithmetic 
task (Vassena, Deraeve, et al., 2019a; Vassena, Gerrits, et al., 

2019b), which required participants to solve 5-digit math-
ematical problems (addition and subtraction) that ranged in 
difficulty across four effort levels: very easy (e.g., 4 + 9 + 
1 − 1 − 1), easy (6 + 1 + 1 + 7 − 9), hard (6 + 8 + 7 + 1 
− 9), very hard (3 + 9 − 5 + 8 – 7). Effort level depended on 
the amount of carrying and borrowing operations required 
(e.g., easy trials require carrying/borrowing once, whereas 
more difficult trials require carrying/borrowing and bor-
rowing many times). Stimuli for the task were taken from 
previous work that has established a monotonic relationship 
between effort levels in these problems and cognitive effort 
exertion (Vassena, Deraeve, et al., 2019a; Vassena, Gerrits, 
et al., 2019b). Each problem was presented on the screen for 
5,000 ms, after which three possible answers to the problem 
appeared (Fig. 1A). Participants had up to 5,000 ms to indi-
cate their choice for the correct answer using the Q, W, or E 
keys. After making a choice, participants were given feed-
back based on their accuracy (“Correct” and “Incorrect”).

Trials could either be cued or uncued. On cued trials, 
before seeing a problem, participants were presented with a 
cue—a “thermometer” filled to different heights—indicating 
how difficult the upcoming problem was going to be, with 
four possible levels (Fig. 1A). On uncued trials, no difficulty 
information was provided before the arithmetic problem. Par-
ticipants first completed an uncued practice phase for 8 trials 
(for which data was not analyzed), followed by 48 trials of 
uncued problems, and finally 144 trials of cued problems.

Fig. 1  Task diagram for Experiments (A) 1 and (B) 2. Panels with timings that contain ≤ were response terminated
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Stimuli were presented against a white background. Math 
problems were presented as black text in Helvetica font with 
a height of 113.4 px (3 cm). Effort cues were 960 × 540 px 
(25.4 cm × 14.3 cm) consisting of a black stadium outline 
(“a thermometer”) filled with a black stadium at four differ-
ent heights (Fig. 1A).

SCR and fEMG recording and analysis

SCR and fEMG recordings were collected continuously 
throughout the entire experiment. SCR was measured via 
Ag-AgCl electrodes attached to the crease between the distal 
and middle phalanges of the first and second digits of the par-
ticipant’s non-dominant hand. fEMG activity was recorded 
over the left corrugator and zygomatic sites using cloth-base 
Ag-AgCl electrodes, following previous recommendations 
(van Boxtel, 2010). Both SCR and fEMG signals were meas-
ured using a MP160 unit (Biopac Systems, Inc., Goleta, CA) 
recording at a sample rate of 1,000 Hz. Following van Boxtel 
(2010), corrugator and zygomaticus signals were bandpass 
filtered between 20 Hz and 490 Hz, rectified, and low-pass 
filtered at 50 Hz before analysis. To measure changes in 
physiological activity in response to effort anticipation and 
exertion, the average difference of signal 1,500 ms before and 
after the stimulus onset—the effort cue for anticipation and 
the arithmetic problem for exertion—was computed per trial.

To analyze SCR, we employed a deconvolutional technique 
based on a physiological model of the general SCR curve that 
separates and quantifies the fast-varying (phasic) and slow-
varying (tonic) components of the skin conductance signal 
(Benedek and Kaernbach, 2010; Otto et al., 2014). This tech-
nique was implemented using the Python module pyphysio 
(Bizzego et al., 2019). Effort-induced changes in SCR were 
computed as the average difference between phasic SCR 500 
ms before and 1,500 ms after cue and problem onset.

Data analysis

Behavioural and processed physiological data were modeled 
using Bayesian hierarchical regression (a.k.a., mixed-effects 
regression) using the brms package in R (Bürkner, 2017) 
using uninformative priors. Specifically, we estimated a series 
of models predicting trial-level response times (RTs), accu-
racy, corrugator fEMG, zygomaticus fEMG, SCR on the basis 
of demand level (1 to 4) and cue condition (cued vs. uncued 
where appropriate), taking random intercepts over partici-
pants. Effort level was treated as a continuous predictor and 
was mean-centered and cueing condition (cued vs. uncued) 
was treated as a binary variable. Trial-level physiological 
signals were standardized within subjects. All reported coef-
ficients (b) are median posterior values, credible intervals 
(CI, i.e., highest density intervals) are at the 95% level, and 
Bayesian p-values (P) represent one minus the proportion of 

the posterior that falls above or below zero (depending on 
the sign of the median posterior value: below zero if b < 0 
and above if b > 0). In line with the traditional interpretation 
of frequentist p-values, Bayesian p-values can be interpreted 
probabilistically as “there is a (P×100) percent chance that the 
effect is zero or a reversal of the central tendency.” All models 
were fit across 3 chains with 5,000 iterations each, discarding 
the first 2,500 samples of each chain for burn-in.

Results

Task performance

Overall accuracy in the task was high (M = 0.79, SD = 0.40; 
Chance level = 0.33, because three response options were pro-
vided). As expected, accuracy rates decreased and correct RTs 
increased with higher demand levels (Fig. 2A and B)—that 
is the more difficult the equation, the slower (b = 0.25, CI = 
[0.23, 0.27], P = 0) and less accurate participants responded (b 
= −0.65, CI = [−0.71, −0.59), P = 0). We also found that par-
ticipants were faster (b = −0.19, CI = [−0.23, −0.13], P = 0) 
and more accurate (b = 0.25, CI = [0.11-0.38], P = 0.0003) on 
trials where demand levels were cued ahead of problem pres-
entation. Finally, we observed a weak interaction between trial 
type and effort level, such that demand level-induced slowing 
(b = −0.05, CI = [−0.09, 0.00], P = 0.0176) and erroneous 
responding (b = 0.13, CI = [0.01, 0.26], P = 0.0175) were 
reduced on cued trials compared to uncued trials. Replicating 
the patterns of RTs and accuracy seen in past work using this 
arithmetic task (Vassena, Gerrits, et al., 2019b), these results 
suggest that our manipulation was successful at engendering 
increased demand across difficulty levels.

Physiological results

Corrugator fEMG In line with our hypothesis, we observed a 
linear increase in corrugator fEMG activity as a function of 
increasing demand level, both during the cue period (antici-
pation; b = 0.04, CI = [0.01, 0.06], P = 0.0009) and during 
the task period (exertion; b = 0.04, CI = [0.02, 0.06], P = 
0.0004), indicating that that activity in the corrugator muscle 
was stronger when participants expected and solved harder 
problems compared with easier ones (Fig. 2C-D). During 
effort exertion, corrugator fEMG activity did not differ 
between trials with demand cues versus trials no demand pre-
ceding the task (b = 0.00, CI = [−0.05, 0.05], P = 0.4921), 
nor did we observe an interaction between cue presence and 
effort level (b = −0.00, CI = [−0.05, 0.04], P = 0.4715).

Zygomaticus fEMG Numerically, we observed a decrease 
in zygomaticus fEMG activity during presentation of the 
demand cue, but this effect was not statistically reliable 
(Fig. 2E; b = −0.01, CI = [−0.03, 0.01], P = 0.1821). We 
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did not observe an effect of problem difficulty on zygomati-
cus activity during problem-solving (Fig. 2F, b = 0.00, CI = 
[−0.02, 0.02], P = 0.4655). However, we did find a weak but 
reliable modulation of task-concurrent zygomaticus fEMG 
activity by the presence of demand cues, such that activity 
higher during cued trials than uncued trials (b = 0.06, CI = 
[0.02, 0.11], P = 0.0069). We did not observe an interaction 
between effort level and trial type (b = −0.02, 95% CI = 
[−0.06, 0.03], P = 0.2553).

SCR We found that, during cue presentation, SCRs subtly 
increased as a function of effort level, such that anticipa-
tion of an upcoming effortful problem was associated with 
greater SCRs (Fig. 2G; b = 0.02, CI = [0.00-0.04], P = 
0.0183). During problem-solving, we did not observe any 
systematic modulation of SCR as a function of demand level 
(b = 0.00, CI = [−0.02, 0.02], P = 0.3819), trial type (b = 
0.00, CI = [−0.04, 0.05], P = 0.4215), or an interaction 
between the demand level and cue presence (b = −0.01, CI 
= [−0.05, 0.04], P = 0.3945; Fig. 2H).

These results provide support for our first hypothesis—
namely, that the anticipation and exertion of cognitive effort 

exertion are tracked by physiological measures of affective 
response. However, these results speak only to a linkage between 
affective response and cognitive costs (i.e., prospective and 
anticipated cognitive demand). In Experiment 2, we examined 
whether these affective signals reflect anticipated and/or experi-
enced effort costs, benefits, or a representation of integrated (net) 
utility—i.e., benefits minus costs—by measuring physiological 
activity as participants completed a (cued) arithmetic task under 
varying levels of demand and reward incentives.

Experiment 2

Method

Participants

According to an a priori power analysis, 50 participants 
was suitable to achieve 80% power (see Supplemental 
Materials). Sixty-six participants (77% female, average 
age = 22.98, SD = 3.95, range = 18-38) were recruited 

Fig. 2  Behavioural outcomes and physiological signals across effort 
levels and trial type in Experiment 1. The x-axis represents difficulty 
level of the equation to be solved (A, B, D, F, H) or the cue being pre-
sented (C, E, G). Solid lines represent uncued trials, and dashed lines 
represent cued trials. The y-axis represents the following: (A) the 
average response time for solving a problem correctly, (B) the aver-
age proportion of problems where the correct answer was identified, 

(C, E, G) the difference in physiological signal before and after the 
appearance of an effort cue, standardized within-subjects relative to 
all other signals during cueing, and (D, F, H) the difference in physi-
ological signal before and after the appearance of the math problem 
to be solved, standardized within-subjects relative to all other signals 
during problem-solving
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from McGill University's human participant pool and the 
community. All participants gave informed consent prior 
to testing and were compensated with course credit or $10 
CAN, plus a bonus of $5 for their performance on the task. 
Technical issues precluded the analysis of eight partici-
pants’ physiological data, leaving a final sample size of 
58 participants.

Procedure

The design of Experiment 2 was identical to the previ-
ous experiment apart from the following changes. First, 
participants could now earn additional rewards for cor-
rectly responding. Specifically, on each trial, participants 
could win 1 or 10 points for correctly solving the math 
problem and were told that at the end of the experiments 
these points would be converted to an additional bonus 
payment (up to $5 CAN). The amount at stake each trial 
was represented by the colour of the effort cue: blue cues 
meant that correctly solving the problem would earn them 
1 point and orange cues meant that it would earn them 10 
points (Fig. 1B). As in experiment 1, participants com-
pleted 192 trials: 24 trials of each combination of reward 
and effort level (e.g., low reward, effort level = 3). Second, 
the demand and incentive levels for all trials were cued, 
such that participants saw an effort cue (a “thermome-
ter”) before the arithmetic problem that they had to solve. 
Finally, after completing the task, participants rated how 
subjectively demanding they found each effort level, by 
rating all possible demand cues and responding (0-10) on 
two subscales of the NASA-TLX (Hart, 2006): the men-
tal demand subscale (“How much mental and perceptual 
activity was required? Was the task easy or demanding, 
simple or complex?”) and the effort subscale (“How hard 
did you have to work (mentally and physically) to accom-
plish your level of performance?”).

Results

Task performance

As in Experiment 1, overall accuracy in the task was 
high (p(Correct) = 0.87; Chance = 0.33) . Correct RTs 
increased (b = 0.16, CI = [0.14, 0.17], P = 0) and accu-
racy decreased (b = −0.57, CI = [−0.63, −051], P = 0) 
significantly as a function of effort level (Fig. 3A and 
B). We found little evidence for an effect of reward level 
(high vs. low) on RTs (b = 0.01, CI = [−0.02, 0.04], 
P = 0.2791) or accuracy rates (b = 0.08, CI = [−0.05, 
0.21], P = 0.1115), or for any interaction between effort 

level and reward (RT: b = 0.01, CI = [−0.01, 0.04], 
P = 0.1604; accuracy: b = 0.02, CI = [−0.09, 0.14], 
P = 0.3353). This overall pattern of performance sug-
gests that we successfully manipulated cognitive 
demand, whereas reward level did not appear alter task 
performance.

Physiological results

Corrugator fEMG Consistent with Experiment 1, we 
observed a linear increase in corrugator fEMG activity 
across effort levels both during presentation of the effort 
cue (Fig. 3C; b = 0.04, CI = [0.02, 0.06], P = 0) and dur-
ing problem-solving (Fig. 3D b = 0.05, CI = [0.03, 0.07], 
P = 0). More interestingly, we found reward incentive level 
modulated corrugator fEMG activity, such that on trials with 
large potential rewards, corrugator fEMG activity was lower 
both during effort evaluation (i.e., during the effort cue; b = 
−0.04, CI = [−0.08, 0.00], P = 0.0179) and effort exertion 
(during problem of presentation; b = −0.05, CI = [−0.08, 
−0.01], P = 0.0069) compared to trials with small potential 
rewards. We found no evidence supporting an interaction 
between effort level and reward incentive on corrugator 
fEMG during either cue presentation (b = 0.01, CI = [−0.03, 
0.04], P = 0.3624) or problem-solving (b = −0.00, CI = 
[−0.04, 0.03], P = 0.4217).

Zygomaticus fEMG During cue presentation, we found a 
negative trend for the effect of effort level on zygomaticus 
response (b = −0.01, CI = [−0.03, 0.01], P = 0.1073), such 
that increased effort level numerically, although not statisti-
cally reliably, reduced zygomaticus signals (Fig. 4E), but 
little evidence for the effect of reward magnitude (b = −0.02, 
CI = [−0.06, 0.02], P = 0.1479). We did not observed an 
interaction between effort level of reward level during cue 
presentation (b = 0.01, CI = [−0.04, 0.02], P = 0.2857). 
Furthermore, we observed little evidence that activity in the 
zygomaticus was modulated by effort level (b = 0.00, CI = 
[−0.02, 0.02], P = 0.4501) or reward magnitude (b = -0.01, 
CI = [−0.05, 0.03], P = 0.2759)—nor evidence for an inter-
action between the two (b = 0.02, CI = [−0.01, 0.06], P = 
0.0897)—during problem-solving (Fig. 4F).

SCR In contrast to Experiment 1, we found little evidence 
that SCR was modulated by effort level during evaluation 
(i.e., cue presentation; b = 0.00, CI = [−0.02, 0.01], P 
= 0.3404) or problem-solving (b = −0.01, CI = [−0.01, 
0.03], P = 0.0841), nor did we observe an effect of reward 
magnitude on SCR (cue: −0.02, CI = [−0.06, 0.01], P = 
0.1177; problem: b = 0.00, CI = [−0.03, 0.04], P = 0.3841; 
Fig. 3G-H).
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Subjective demand ratings

Participants also provided subjective demand and effort rat-
ings of the arithmetic problems by rating all possible cues 
they saw during the task (Fig. 1B). We found that higher-
demand math problems were also rated as more demanding 
subjectively, in terms of both mental demand (b = 0.89, 
CI = [0.72, 1.07], P = 0) and experienced effort (b = 1.06, 
CI = [0.88, 1.23], P = 0), further demonstrating that our 
manipulation of subjective cognitive demand was successful 
(see Supplemental Materials; Figures S3A-B). We did not 
find a reliable effect of reward on mental demand (b = 0.14, 
CI = [−0.30, 0.57], P = 0.2679), but did find an interaction 
between reward and effort for mental demand ratings (b = 
0.41, CI = [0.07, 0.75], P = 0.0091), such that, relative to 
low-demand problems, high-demand problems were per-
ceived as more demanding when larger reward incentives 
were at stake. We also observed a robust positive effect of 
reward on effort ratings (b = 0.47, CI = [−0.07, 0.86], P 
= 0.0133), such that higher-reward cues were perceived as 
more effortful (Figures S3B).

Fig. 3  Behavioural outcomes and physiological signals across effort 
levels and reward levels in Experiment 2. The x-axis represents dif-
ficulty level of the equation to be solved (A, B, D, F, H) or the cue 
being presented (C, E, G). Solid lines represent high reward trials, 
and dashed lines represent low reward trials. The y-axis represents 
the following: (A) the average response time for solving a problem 
correctly, (B) the average proportion of problems where the correct 

answer was identified, (C, E, G) the difference in physiological signal 
before and after the appearance of an effort cue, standardized within-
subjects relative to all other signals during cueing, and (D, F, H) the 
difference in physiological signal before and after the appearance of 
the math problem to be solved, standardized within-subjects relative 
to all other signals during problem-solving

Fig. 4  Relationship between corrugator activation during the cue 
and performance on the ensuing task. The x-axis represents effort 
the x-axis represents difficulty level of the cue to be presented and 
the equation to be solved. The y-axis represents the average response 
time for solving a problem correctly. The colours represent the inten-
sity of corrugator activity during the cue preceding the equation, 
illustrated by a median split (grey = lower than the median activa-
tion, black = higher than the median activation). Error bars represent 
standard error
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Relationships between self‑report measures 
and physiological reactivity

In an exploratory analysis, we also probed possible relation-
ships between individual differences in subjective ratings of 
demand and effort—as indexed by TLX ratings in response 
to the demand/reward cues—and physiologically-measured 
negative affect evoked by these cues before each trial—as 
indexed by corrugator fEMG activity during cue presenta-
tion. In other words, did participants who reported more diffi-
cult trials as subjectively more effortful also exhibit increased 
corrugator fEMG activity in response to cues signalling this 
demand? To test this, we examined the relationship between 
each participant’s TLX rating difference between the highest 
(4) and lowest effort levels (1), and the difference in (stand-
ardized) corrugator fEMG activity between the highest and 
lowest effort levels. We observed that corrugator fEMG 
activity correlated positively with both subjective demand 
(r = 0.31, CI = [0.08, 0.51], P = 0.006) and effort ratings 
(r = 0.19, CI = [−0.06, 0.41], P = 0.067), indicating that 
subjective demand and effort ratings mirrored corrugator 
fEMG activity during cue evaluation—although this effect 
was more pronounced in terms of mental demand ratings 
(Figures S3C-D). We also examined relationships between 
subjective demand and zygomaticus fEMG activity, as well 
as SCR, but we did not find any reliable inter-relationships 
between ratings and physiological responses (Figure S4).

Relationship between anticipatory physiological 
reactivity and task performance

Further, we conducted an exploratory analysis examining 
whether affective responses accompanying prospective effort 
evaluation—indexed by anticipatory corrugator fEMG activ-
ity evoked by effort/reward cues (Fig. 3C)—were associated 
with faster RTs on the ensuing arithmetic problems, which 
we take as a behavioral index of increased cognitive effort 
investment (Hübner and Schlösser, 2010; Manohar et al., 
2015). To do so, we estimated a trial-by-trial regression 
predicting correct RTs on the basis of anticipatory (at cue) 
corrugator fEMG activity on that trial, controlling for objec-
tive effort and reward level, as well as other covariates likely 
to affect response times (trial number and previous error; 
Table S1). In doing so, we found a modest but statistically 
reliable negative predictive effect of corrugator activity on 
subsequent task RTs (b = −0.01, CI = [−0.02,0.00], P = 
0.0443), such that stronger, negative-valenced physiologi-
cal responses registering negative affect at cue presentation 
predicted faster RTs during arithmetic problem-solving 
(Fig. 4). In other words, this result suggests that heightened 
(negative) affective reactivity to prospective effort invest-
ment engendered greater effort investment—as indexed by 
faster responses—on the subsequent task.

General discussion

A large and growing body of work suggests that people find 
the expenditure of cognitive effort aversive and, as a conse-
quence, avoid cognitively effortful activities (Kool and Bot-
vinick, 2018). While past work has explained effort aversion 
in economic terms—do the benefits (i.e., rewards) of effort 
exertion outweigh the costs of effort exertion?—the affective 
nature of effort evaluation is less well understood (Inzli-
cht et al., 2015). A demonstration that these evaluations are 
indeed registered as negatively affective would help clarify 
the aversive nature of effort expenditure from a psychologi-
cal perspective. In the present study, we find evidence that 
moment-to-moment variations in rapid affective anticipatory 
evaluations of effort—as captured by fEMG and SCR meas-
urements—index an integrative signal of the relative costs 
(effort) and benefits (reward magnitude) of effortful alloca-
tion (Shenhav et al., 2013; Vassena et al., 2014). Specifically, 
we find that corrugator fEMG activity tracked increased task 
demands and integrated information about rewards, such that 
corrugator activity was 1) heightened when participants 
were asked to solve more complex arithmetic problems, 2) 
dampened when higher rewards were presented for correctly 
solving these problems, and 3) predictive of subsequent task 
performance.

Negative affective response tracks cognitive 
demand level

A key tenet of dominant theories of effort emphasizes the 
costly role effort plays in discouraging further engagement—
i.e., effort is conceptualized here as a primitive and inher-
ently aversive signal that discourages a cognitive agent from 
adopting a course of action (Kool and Botvinick, 2018; Kur-
zban et al., 2013). Analogously, arousal and valence can 
be viewed as primitive signals employed by the motiva-
tional system, which define, respectively, the intensity and 
pleasantness of the affective state evoked and in turn direct 
approach/avoidance behaviour towards stimuli (Moors et al., 
2013; Scherer, 2009; Smith and Ellsworth, 1985). While 
past work suggests that corrugator and zygomaticus fEMG 
activity indexes these affective signals and is sensitive to the 
rated valence of stimuli such as pictures and sounds (Larsen 
et al., 2003), the physiological markers of affective evalua-
tions of cognitive effort have received less attention (Berger 
et al., 2020).

Supporting this linkage, we found that corrugator fEMG 
activity tracked prospective and enacted effort levels and that 
SCR (indexing arousal) tracked anticipated effort exertion 
during an effortful cognitive task in a parametric fashion. 
This finding conforms well with the idea that cognitive effort 
is evaluated as aversive. That is, the cost of cognitive effort 
was reflected in physiological indexing negative affective 
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response, Notably, however, we do not replicate the relation-
ship between SCR and effort level in Experiment 2, hinting 
that negative valence may carry more information about 
evaluations of effort costs than physiological arousal.

Furthermore, in exploratory analyses, we found that 
increased corrugator activation during cue presentation 
led to increased effort exertion during task performance. 
Insofar as corrugator response indexes negative affect, this 
finding is consistent with popular theories of emotion that 
highlight the adaptive role of affect in decision-making, 
wherein affective signals work to adaptively guide an agent’s 
actions—here, the recruitment and investment of cognitive 
resources—to salient changes in the environment—here, 
the degree of effort required and the prospective amount of 
reward at stake (Moors et al., 2013; Scherer, 2009).

An open question concerns whether activity in the corru-
gator can be taken as a selective signal for affective response 
or whether it might be additionally reflect recruitment and/or 
deployment of cognitive control. Past studies that examined 
the relationship between fEMG and concurrent cognitive 
effort exertion were unable to disambiguate whether vari-
ation in corrugator activity arise from changes in negative 
affect and/or in cognitive control exertion (Berger et al., 
2020; van Boxtel and Jessurun, 1993; Silvestrini and Gen-
dolla, 2009). We examined corrugator fEMG activity in the 
prospective evaluation of cognitive effort—i.e., during a 
cue phase where participants, presumably, are not actively 
exerting cognitive effort—finding that corrugator activity 
positively relates to the level of cognitive demand signaled 
by the cue and is further dampened by the prospect of larger 
reward. Echoing previous observations that negatively 
valenced stimuli evoke increased corrugator fEMG activ-
ity accompanying (Heller et al., 2011; Lang et al., 1993; 
Larsen et al., 2003), we found the most robust differentia-
tion in corrugator activity during passive viewing of cues 
associated with varying demand and reward levels. We take 
these results as evidence that corrugator activity reflects, 
at minimum, the (negative) affective component of effort 
evaluation. An important avenue for future work would be 
to disentangle concurrent cognitive control deployment and 
affective response, for example, by examining the concord-
ance between physiological, putatively “objective” meas-
ures of online effort, such as pupillometry and physiological 
measures of affective valence with fEMG, as proposed by 
van der Wel and van Steenbergen (2018).

Negative affective response is dampened by reward 
incentives

Similarly, models of cognitive effort investment predict 
that the default avoidance of effort can be counteracted by 
increasing incentives (Sandra and Otto, 2018; Sayalı and 
Badre, 2019; Kool and Botvinick, 2018). Indeed, we find 

a convergent result in the present data—corrugator fEMG 
activity also was attenuated in the face of larger reward 
incentive—suggesting that the affectively aversive character 
of effort is mitigated when effort expenditure is tied to larger 
rewards. In other words, rewards function to offset higher 
demands in the service of attaining valuable goals, both in 
computational frameworks and, as we have demonstrated, at 
a primitive psychophysiological level.

Importantly, corrugator fEMG activity tracked effort and 
reward levels not only during problem-solving, but also dur-
ing cue presentation. This suggests that in addition to captur-
ing the affective response associated with the engagement 
of cognitive resources (i.e., mental strain; in line with past 
work: Berger et al., 2020; van Boxtel and Jessurun, 1993) 
and the potential receipt of rewards, the anticipatory evalu-
ation of rewarded effort expenditure also was indexed by 
physiological measures of affective response. Notably, we 
did not observe an interaction between prospective reward 
magnitude and effort intensity, suggesting that corruga-
tor fEMG activity was modulated uniformly in the current 
task, indexing the integration of benefits (rewards) and costs 
(effort), consistently across effort levels. This is in line with 
past work, which suggested that that the (minimal) signa-
ture of cost-benefit integration in effort valuation may be 
subtractive in nature (Lopez-Gamundi et al., 2021; Vogel 
et al., 2020).

Notably, while corrugator activity indexed heightened 
reward incentives, task performance (response times and 
accuracy) did not. This is not entirely uncommon: while 
past work has found reward-induced modulations in task 
performance (Otto & Vassena, 2021), these effects are far 
from ubiquitous and many reward manipulations—particu-
larly when rewards vary on a trial-by-trial basis, as in the 
present study—fail to produce reliable changes in behav-
ioural indices of cognitive effort exertion (Otto and Daw, 
2019; Sandra and Otto, 2018). Similarly, we found that 
participants’ subjective reports about their effort outlay 
increased when faced with higher rewards, mirroring past 
work (Fairclough and Ewing, 2017). Notably, this pattern 
contrasts with our observed pattern of corrugator activity: 
while heightened reward incentives increased subjective 
reports of effort exertion, they also decreased corrugator 
activity. This suggests that on high-reward trials, partici-
pants outwardly reported that they needed to exert additional 
effort to maintain their performance, while at the same time 
exhibiting decreased negative affect, as indexed by corru-
gator activity. This finding is in line with recent proposals 
that subjective (self-report) and objective (task performance, 
Dreisbach and Jurczyk, 2022, or physiological, Kreis et al., 
2020) measures of effort may differentially index unique fac-
ets of cognitive effort (Thomson and Oppenheimer, 2022). 
In this respect, it is interesting that physiological measures 
of negative affect—and, in particular, those measured before 
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effort exertion—were negatively sensitive to changes in pro-
spective reward, where coarser behavioural and subjective 
indices were not.

Conclusions

This pattern of results suggests that activity in the corruga-
tor indexes an affectively salient integrative signal of net 
utility—the anticipated benefits of effort exert minus their 
presumed costs—that serves to guide human behaviour 
towards the least demanding, but most rewarding, course of 
action. In other words, the integration of demand and reward 
(i.e., the “net utility” resulting from cost-benefit analysis) 
may be “translated” into affective signals that, act beyond 
being epiphenomenal by-products of cost-benefit compu-
tations, appear to inform motivated performance (Inzlicht 
et al., 2015). Such a view is consistent with recent proposals 
for an “affective-signalling hypothesis,” which proposes that 
the negative affective reaction to effortful control triggers 
behavioral adaptation (here, effort exertion; Dignath et al., 
2020). In other words, the relationship between effort level, 
reward, and corrugator activation seen in the present study 
may in turn reflect the moment-to-moment felt output of a 
computed cost-benefit equation that people use to inform 
subsequent decisions about effort investments (Kurzban 
et al., 2013). To examine this possibility, future work should 
investigate how these physiological signals might predict 
future decisions to engage in (or withhold) cognitive effort-
ful activity, which would elucidate the relationship between 
the well-documented propensity for people to avoid effort 
(Kool et al., 2010) to their affective evaluations of effort 
observed here.
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