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Reward at encoding but not retrieval modulates memory for detailed events 
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A B S T R A C T   

Much of the evidence suggesting that rewards improve memory performance has focused on how explicit re
wards facilitate encoding of simplistic stimuli. To expand beyond this focus, the current study tested how explicit 
rewards presented at encoding as well as retrieval facilitate memory for information contained within complex 
events. In a single experimental session, participants (N = 88) encoded videos depicting naturalistic events (e.g., 
getting dressed) and then completed a recognition test probing their memory for different detail types (i.e., 
event, perceptual, or contextual) from the video stimuli. We manipulated the explicit reward associated with 
each video, such that accurate memory responses for half the videos were associated with high monetary in
centives and half were associated with low monetary incentives. This reward manipulation was presented at 
either encoding or retrieval during a recognition memory test. The reward manipulation only affected memory 
when presented at encoding and this effect did not depend on the type of detail probed. Drift Diffusion Modelling 
further revealed that presenting reward information at encoding engendered greater encoding fidelity—indexed 
by an increase in drift rate—but did not change response caution at the time of retrieval—indexed by response 
threshold. Together, our results suggest that presenting reward information when encoding but not retrieving 
complex events has a general facilitatory effect, likely via attentional processing, on the ability to later remember 
precise details from the event.   

A growing body of work indicates that the presence of reward fa
cilitates episodic memory (Miendlarzewska, Bavelier, & Schwartz, 2016; 
Shohamy & Adcock, 2010). However, many of the studies examining 
how reward and episodic memory interact have focused on the moti
vating effect of reward when encoding simple stimuli, such as objects or 
words (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 
2006; Murty & Dickerson, 2016; Wolosin, Zeithamova, & Preston, 
2012), leaving open questions about whether presenting incentives 
during retrieval equally affects performance (Halsband, Ferdinand, 
Bridger, & Mecklinger, 2012; Shigemune, Tsukiura, Nouchi, Kambara, & 
Kawashima, 2017), particularly for complex memories that contain a 
variety of details (e.g., event, perceptual, and contextual information; 
Sheldon, Amaral, & Levine, 2017). Here, we addressed both questions 
by examining if explicit reward incentives enhance memory for details 
contained within complex events, and if this reward effect depends on 
whether incentives are introduced during the encoding or retrieval 
process. 

There are several lines of work demonstrating an effect of reward on 
memory encoding. Individuals tend to prioritize or are motivated to 

encode information that is explicitly associated with high reward over 
information associated with low reward values (Adcock et al., 2006; 
Ariel & Castel, 2014; Gruber & Otten, 2010; Hennessee, Patterson, 
Castel, & Knowlton, 2019; Kuhl, Shah, Dubrow, & Wagner, 2010; Murty 
& Dickerson, 2016; Shohamy & Adcock, 2010; Soderstrom & McCabe, 
2011; Talmi, Kavaliauskaite, & Daw, 2021; Wolosin et al., 2012). For 
example, Gruber and Otten (2010) found that when words were asso
ciated with a low- versus high-reward cue during encoding, the 
high-value words were better remembered on a subsequent recognition 
memory test. However, the mechanisms underlying reward enhance
ments of encoding are not entirely clear. One prominent view suggests 
that reward signals the relative importance of information at encoding 
and improves memory performance by increasing motivation and 
leading to a greater allocation of attentional resources to rewarding 
material (Ariel & Castel, 2014; Gruber & Otten, 2010; Miendlarzewska 
et al., 2016). Evidence also suggests that reward-motivated encoding 
effects may be dependent on the explicit encoding strategy used (Hen
nessee et al., 2019). This view raises questions about whether the rela
tive importance of information, signaled by explicit reward 
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presentation, can also serve to modulate response strategies at retrieval. 
In many real-life situations, the relative importance of information is 

only evident after encoding has taken place. For example, Dunsmoor, 
Murty, Davachi, and Phelps (2015) identified mechanisms by which 
memories related to salient future events can be enhanced after 
encoding. Although this finding was related to consolidation processes, 
recent work has identified that reward-related enhancements of episodic 
memory can also occur prior to consolidation, when information enco
ded without reward is immediately retrieved with incentives (Shige
mune et al., 2017). When reward is presented at retrieval, changes to 
response caution may reflect strategic, top-down attempts to modulate 
memory performance, as this effect has also been found in a number of 
other cognitive domains (Green, Biele, & Heekeren, 2012; Otto & Daw, 
2019). In support of this, Han et al., (2010) found that reward-motivated 
retrieval immediately after encoding was linked to participants' moti
vational state rather than their actual mnemonic performance. Whether 
reward-motivated retrieval can enhance memory performance for pre
viously encoded information through short-term, putatively motiva
tional processes such as changes to retrieval strategy, remains unclear 
but would shed light on a potentially adaptive method for utilizing 
memories post-encoding. Thus, one aim of the present study is to further 
understand reward-related memory enhancements: does explicit reward 
presented at encoding or retrieval improve episodic memory, and if so, 
do these effects emerge from the same mechanisms? 

A second aim of our study is to move beyond prior research on 
reward effects on memory that have relied on simplistic stimuli (see 
review by Miendlarzewska et al., 2016), and to instead test rewards 
possible motivating effects in the context of complex event memories 
that better represent real-life remembering. Complex events contain 
varied types of information, such as event details (i.e., central plot ele
ments), contextual details (e.g., spatial relationships), and other 
perceptual details (e.g., other visual information). Theories of memory 
have proposed distinctions between how these types of details are pro
cessed within an encoded and retrieved event (Moscovitch, Cabeza, 
Winocur, & Nadel, 2016; Rubin, 2006; Sekeres, Moscovitch, & Winocur, 
2017). Moreover, recent empirical work highlights important behav
ioural differences in how these details are remembered and forgotten 
(Sekeres et al., 2016; Sheldon et al., 2017), lending support to the idea 
that certain detail types are encoded —and perhaps retrie
ved—differently. For example, event details may be privileged by virtue 
of describing the key elements of a memory (Sekeres et al., 2016). 
However, no study to our knowledge has investigated how these 
different detail types are influenced by reward—a question which may 
contribute significantly to our understanding of how reward enhances 
different aspects of complex memories. 

1. Current study 

We conducted two complementary experiments. In Experiment 1, we 
manipulated the reward value—a high value of 25-cents versus a low 
value of 1-cent—associated with complex event stimuli (video clips 
depicting everyday events, such as walking on a busy sidewalk) during 
encoding. The reward value indicated the amount participants could 
earn in a subsequent recognition test for correctly recognizing details 
from that event—e.g., identifying the statement “The woman removed 
her jacket” as True or False. In Experiment 2, participants were only 
informed of the reward value (25-cents versus 1-cent) for correctly 
answering a question about each video during retrieval. Since our 
research questions were not focused on testing time-dependent consol
idation mechanisms, we used an immediate retrieval paradigm in both 
experiments, which has previously been used to demonstrate reward 
effects both in reward-at-encoding (Wolosin et al., 2012) and reward-at- 
retrieval paradigms (Shigemune et al., 2017) using simplistic stimuli. In 
both experiments, we expected that accuracy on the recognition mem
ory task would be higher for questions pertaining to high- versus low- 
reward videos, in accord with prior studies finding memory 

enhancement for information associated with high rewards (Shohamy & 
Adcock, 2010); however, we hypothesized that in Experiment 1, 
improved memory performance would be driven by stronger encoding, 
whereas in Experiment 2, this effect would emerge from more cautious 
decision-making. 

To test whether reward enhances attentional processing of to-be- 
encoded information manifesting as strength of evidence, or if reward 
shifts response strategy at retrieval via higher response caution—we 
used a Drift Diffusion Model (DDM; Ratcliff & Rouder, 1998). In brief, 
these models assume that the internal evidence (i.e., memory) used to 
respond to a recognition memory question builds over time until a 
response threshold—which controls the speed-accuracy trade-off—has 
been reached. These DDM parameter estimates provide unique insight 
into how reward information alters memory decisions (Ratcliff & 
McKoon, 2008). Specifically, by jointly analyzing response accuracy and 
response times (RTs), fitting a DDM affords additional understanding of 
whether the effects of reward on recognition memory accuracy are 
attributable to reward-induced increases in the strength of evidence 
accumulation (i.e., a faster drift rate; which would result in more ac
curate and faster responses and indicate better encoding), or by reward- 
induced increases in response caution (i.e., elevated response thresh
olds; which would result in more accurate but slower responses and 
indicate a shift in response strategy at retrieval). Reward incentives have 
been demonstrated to alter both drift rates and response thresholds 
across diverse task domains (Green et al., 2012; Otto & Daw, 2019). We 
predicted that when given reward cues at encoding, participants would 
show improved recognition memory performance through increased 
drift rates (i.e., stronger encoding), but when given reward cues only at 
retrieval, participants would instead adjust their response thresholds to 
trial-by-trial variations in available rewards. 

2. Experiment 1: reward-motivated encoding 

2.1. Method 

2.1.1. Participants 
Forty-seven undergraduate students were recruited through the 

McGill University participant pool and compensated with course credit. 
While participants were told they would receive a bonus payment based 
on the number of correct responses during the recognition memory task, 
all received $10 CAD regardless of performance. To ensure all partici
pants were adequately engaged on the task, we assessed whether overall 
response accuracy (i.e., percentage of total correct) was significantly 
greater than chance (binomial test at the 0.05 level). One participant 
whose overall response accuracy (i.e., percentage of total correct) did 
not meet this criterion was excluded. One additional participant was 
also excluded, as their data did not record due to a technical error. This 
left us with a total of 44 participants (Meanage = 20.2, Rangeage = 18–25, 
SDage = 1.31, 81.8% female). Participants provided informed consent, 
and all procedures were in accordance with the McGill University's 
Research Ethics Board. 

2.1.2. Video stimuli 
Sixteen short (range: 10 to 20 s, mean = 18.12 s, SD = 3.46 s) and 

silent video clips depicting naturalistic scenarios were selected from a 
stimulus set used previously by our group (Sheldon et al., 2017). The 
videos were presented in a 450- by 720-pixel window and were associ
ated with a descriptive title (e.g. “Cleaning-up after a party”, see Fig. 1). 
The videos were distinct from each other, and each contained a unique 
set of perceptual features, and portrayed naturalistic scenarios (e.g., 
cleaning-up; talking on the phone): eight videos contained both men and 
women, six videos contained only women, and two videos contained 
animals. 

2.1.3. Recognition questions 
Each of the sixteen videos was associated with nine true/false 

K. da Silva Castanheira et al.                                                                                                                                                                                                                



Cognition 219 (2022) 104957

3

statements designed to probe different types of details. For each state
ment, two versions were constructed, with one including true and one 
including false details. Three statements were previously classified as 
querying event details (details about events in the video, e.g., “the pe
destrian's friends waited for him”), three were classified as querying 
perceptual details (details about the images present in the video e.g., 
“the clown was wearing an orange jumpsuit”) and three statements 
queried contextual details from the videos (details about the spatial 
relationships in the video e.g., “the pedestrians passed behind the 
clown”; see Sheldon et al., 2017). 

In total, there were 288 statements, of which half included true de
tails, while the other half included false details. To avoid testing the 
same statement twice (e.g., once in the false and once in the true form), 
the statements were divided in two separate runs of 144 where each run 
contained an equal number of statements in the true or false versions 
(see Fig. 1). Each participant was shown these runs in a randomized 
order. 

2.1.4. Procedure 
Participants completed an encoding, delay, and retrieval phase in a 

single experimental session that lasted approximately 2 h. For each 
participant, eight videos were randomly assigned to the high-reward 
(25-cents) condition and eight videos were assigned to the low-reward 
(1-cent) condition. Depending on the reward condition, videos were 
presented either with a blue or an orange border; color was counter
balanced across participants for both experiments. Critically, partici
pants were informed about the color-reward association at encoding and 
notified that they would receive the video's associated reward value for 
each correct response they made at retrieval. After the retrieval phase, 
participants were instructed to verbally recall as many of the video titles 
as they could, in any order. Finally, participants were asked to indicate, 
for each video, whether it was paired with a high-value reward or a low- 
value reward. 

2.1.5. Encoding phase 
Participants were first presented with an image of a 25- or 1-cent 

coin for one second, indicating the reward value of the following 

video, on a 900- by 1440-pixel screen with a black background, using 
PsychoPy (Peirce, 2009) The video was preceded and followed by a 5-s 
presentation of the video title. To maintain engagement, participants 
rated how entertaining they found each video (This video was enter
taining) on a scale of 1 (strongly disagree) to 5 (strongly agree). After 
presenting each video once, all videos were played a second time in the 
same order to encourage accurate memory performance, without the 
entertainment rating. Following prior work in the motivated cognitive 
control literature (Chiew & Braver, 2014; da Silva Castanheira, LoParco, 
& Otto, 2021; Otto & Vassena, 2020; Parro, Dixon, & Christoff, 2018), 
videos were blocked to minimize carry-over effects between the high 
and low reward conditions (Tambini, Rimmele, Phelps, & Davachi, 
2017), such that all videos assigned to the same reward condition were 
presented together, and the order of presentation (i.e., high-low or low- 
high) was counterbalanced. 

2.1.6. Retrieval phase 
After a ten-minute delay that consisted of questionnaires, partici

pants completed a recognition memory test for details of the encoded 
videos. Across 144 trials, participants were first presented with a fixa
tion cross for 1s (‘+’). Following this, they were randomly presented 
with the title of one of the videos from the encoding phase and pressed 
the spacebar once they had the corresponding video in mind. A one 
second fixation cross followed this response, and then participants were 
presented with a statement about a detail contained in the video. They 
indicated whether the statement was true or false by pressing either the 
right or left arrow key on the keyboard within a 5 s time window. 
Keyboard response mappings were counterbalanced between partici
pants. After responding, participants received feedback on their 
response: correct responses were associated with the on-screen key 
turning green and a one-second cash register sound (“ka-ching!”), while 
incorrect responses were associated with the on-screen key turning red 
and no sound played (see Fig. 1). No information about the previously 
experienced reward values was provided. 

After this recognition memory test, we measured memory for the 
video titles by asking participants to verbally recall as many video titles 
as possible within 60 s. These data were not analyzed for the present 

Fig. 1. Schematic Representation of the recognition memory task for both Experiments: A. First experiment with the reward manipulations at encoding and B. second 
experiment with the reward manipulations at retrieval. For both experiments, after the recognition memory task, participants completed a free recall of the video 
titles, and a memory test for the reward manipulation in that order. 
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paper. Finally, we measured memory for the reward associated with 
each video using a forced-choice task. Over a series of trials, participants 
saw a fixation cross for 1s, then a video title. They pressed the left or 
right arrow key (counterbalanced across participants) within 5 s to 
indicate whether they thought the video was associated with a high or 
low reward during the encoding task. 

2.1.7. Data analysis 
To examine whether reward led to an increase in recognition mem

ory performance, we ran a Bayesian mixed-effects logistic regression, 
taking trial-by-trial retrieval phase accuracy as the outcome variable, 
and reward (low versus high), detail type (event, perceptual, and 
contextual) and their interaction as predictor variables. Both reward and 
detail type were effect-coded, where event details were chosen as the 
baseline (or reference)—given prior work suggesting their centrality in 
episodic memory (Moscovitch et al., 2016; Rubin, 2006; Sekeres et al., 
2016, 2017; Sheldon et al., 2017). Thus, the main effect of reward is 
interpreted as the difference in log-odds of correct responding between 
the reward conditions across detail type, the main effects of both 
contextual and perceptual details reflect the change in log odds between 
the respective detail type compared to the global average, and their 
interactions reflect a change in the global effect of reward by detail type. 
Additionally, we estimated a separate Bayesian linear regression on 
participants' log-transformed response times (RTs) as a function of the 
same predictors. 

We estimated hierarchical Bayesian regressions using the brms 
package (Bürkner, 2017) for R, which implements Markov Chain Monte 
Carlo sampling (Hoffman & Gelman, 2014). We report each effect esti
mate as the mean of the posterior samples and the 95% highest 
posterior-density (HPD) interval. Additionally, we report Bayes Factors 
(BFs), which reflect the relative amount of evidence favoring the alter
nate or the Null model: where values above 3 indicate evidence in favor 
of the alternate model and values below 1/3 indicate evidence in favor 
of the Null model (Lee & Wagenmakers, 2013). For the logistic re
gressions, diffuse conjugate priors were chosen for the parameters. 
Namely, we used a normal distribution centered at 0 with a standard 
deviation of 10 for the intercept, a Cauchy distribution with a location of 
0 and a scale of 10 for the random effects, and a normal distribution 
centered at 0 with a standard deviation of 0.2 for the fixed effects which 
approximately corresponds to the difference between 0.50 and 0.55 in 
logit units. For the linear regressions examining RTs, we chose similar 
priors except for the regression coefficients which were given normal 
distributions centered at 0 with a standard deviation of 0.5. Based on 
visual inspection of the trace plots and the potential scale reduction 
factor (R-hat), which were all well below 1.1 (Brooks & Gelman, 1998), 
we concluded that the models converged successfully. 

2.1.8. Drift-diffusion model (DDM) parameter estimation 
We used hierarchical Bayesian estimation of drift diffusion model 

parameters to estimate the effect of reward on quality of stimulus 
encoding (modeled as the drift rate) and response thresholds (M. J. 
Frank et al., 2015). Hierarchical drift diffusion models (HDDMs) allow 
one to test whether trial-by-trial variations in decision-parameters (e.g. 
threshold and drift rate) are a function of manipulated within-subject 
variables (here, reward incentives). These parameters have the advan
tage of being fit hierarchically, both to individual subjects and con
strained by the group-level parameter distribution (M. J. Frank et al., 
2015; Wiecki, Sofer, & Frank, 2013). We used the DDM to jointly model 
responses (i.e., correct vs incorrect) and RTs produced in response to the 
recognition memory questions in the retrieval phase. In turn, the DDM 
decision parameters—the drift rate v, non-decision time t, and threshold 
a—were modeled using a regression and varied as a function of both 
reward and an intercept on each trial, where the reward level of the 
associated stimulus was dummy coded (low reward 0, high reward 1). 
When responses are accuracy-coded (as they are in the present DDM), 
the drift rate reflects the signal-to-noise ratio of the decision-process 

(here, the memory trace) whereas the threshold reflects the speed- 
accuracy trade-off—how much evidence is needed to make a response. 
Meanwhile, the non-decision time reflects the components of trial-by- 
trial RTs which do not factor into the decision process and thus no to 
directly affect accuracy (e.g., motor execution, reading the question). 

We estimated these parameters using the HDDM toolbox (Version 
0.6.0; Wiecki et al., 2013) for Python, which uses Markov Chain Monte- 
Carlo techniques. Parameters were assumed to be distributed according 
to a normal (for real-valued parameters) or a Gamma (for positive- 
valued parameters) distribution and centred around the group mean 
with group variance for each subject. Prior distributions for each 
parameter were informed by several studies reporting best fitting DDM 
parameters recovered on a range of decision-making tasks (Wiecki et al., 
2013). To estimate the HDDM parameters, 5500 samples were drawn 
from this model, discarding the first 500 samples for ‘burn-in’ and using 
a ‘thinning’ of 5, resulting in 1000 samples per chain. A total of three 
chains were used to estimate the degree of convergence of the model on 
the posterior distribution using the trace plots and the potential scale 
reduction factor (R-hat), which were all well below 1.1 (Brooks & Gel
man, 1998). Point estimates (i.e., means) and 95% highest posterior 
density intervals were calculated using the aggregated posteriors of the 
three chains. 

3. Results 

3.1. Detail recognition 

First, we examined whether reward improves performance on the 
recognition memory task. As depicted in Fig. 2A, we observed a positive 
effect of reward level on recognition accuracy regardless of detail type, 
suggesting that responses were more accurate for questions about high- 
reward videos (Maccuracy = 71.9%) compared to low-reward videos 
(Maccuracy = 68.6%). This effect was confirmed statistically using a hi
erarchical Bayesian logistic regression predicting correct responses (β =
0.142, 95% HPD = [0.026–0.256], BF = 5.446; see Table 1 for all pos
terior effect estimates). Next, we tested whether detail type influenced 
recognition memory accuracy. We found a negative effect in response 
accuracy for questions involving perceptual details compared to event 
details (β = − 0.405, 95% HPD = [− 0.566, − 0.237], BF >100), sug
gesting that participants were on average less accurate at recalling 
perceptual details. However, no difference in response accuracy was 
found for questions testing contextual details compared to event details, 
as the 95% HPD contained zero (β = − 0.045, 95% HPD = [− 0.212, 
0.118], BF = 0.465). Finally, reward was not found to interact with 
either detail type, as both 95% HPD intervals contained zero (see 
Table 1), suggesting reward equally affected all detail types. 

Examining correct RTs in the recognition test, our analyses did not 
reveal any effect of reward level on RT (β = − 0.005) as the 95% HPD 
interval crossed zero (HPDI = [− 0.016, 0.027], BF = 0.025), suggesting 
there is likely no overall difference in correct RTs between reward levels 
(see Table 2). We refer the reader to the online supplemental materials 
for the results of the same models estimated using the frequentist 
framework, replicating the findings reported here. 

3.2. Memory for reward incentives 

We examined participants' memory of the assigned reward levels 
using a hierarchical logistic regression, finding that participants per
formed above chance (Maccuracy = 74.3%) in reporting the reward con
dition assigned to a video, as indexed by the model intercept (β = 1.201, 
95% HPDI = [0.940, 1.452]; see Table S1). Next, we tested whether 
participants were better at remembering the reward association for the 
high-reward videos and found that participants' memory for the reward 
association was not significantly different between high versus low 
reward videos (β = − 0.111, 95% HPDI = [− 0.320, 0.103], BF = 0.924; 
see Table S1). Additionally, we did not find that accurate memory for the 
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reward association predicted recognition memory accuracy, nor did 
accurate memory for the reward association interact with the reward 
level (see Tables S2). Finally, we did not observe a correlation between 
participants' change in accuracy between reward conditions and their 
accuracy for recalling the reward association (r = 0.031, 95% HPDI =
[− 0.24, 0.29]; see supplementals for more information). These results 
suggest that despite having an accurate memory for the title-reward 
association, participants are likely not using this association to modu
late their response caution on the following trial. Next, we directly test 
whether the reward effect reflects a modulation of participants' response 
caution, or whether there is a stronger correspondence of the memory 
trace to the stimulus using DDM analysis. 

3.3. Drift diffusion model (DDM) analysis 

To examine whether the observed benefits of reward upon recogni
tion memory are explained by the increased fidelity of stimulus encod
ing (which would manifest as a reward-induced change in drift rate) 
versus a change in response strategy (manifesting as reward-induced 
changes in response thresholds), we jointly modeled participants' re
sponses (i.e., correct, or incorrect) and RTs using a hierarchical DDM 
(Wiecki et al., 2013). Examining the posterior distributions of the DDM 
parameters (Fig. 3), we found that reward level significantly increased 
drift rates (Mdrift = 0.064, 95% HPDI = [0.02, 0.10]; see Table 3)— 
suggesting that high-reward stimuli were encoded with greater fidelity 
compared to low-reward stimuli— but that reward level did not appear 
to modulate other model parameters (i.e., threshold 95%HPDI =
[− 0.02, 0.096]; and non-decision time 95%HPDI = [− 0.035, 0.009]). 
Importantly, we also assessed whether the change in accuracy could be 
reflected as a change in participants' overall tendency to respond true/ 
false; however, our signal-detection theory analysis suggests this is likely 
not the case (see supplemental materials). In other words, the DDM 
analysis suggests that the observed reward-induced increase in 

Fig. 2. The effect of reward on recognition memory. A plot of recognition accuracy for reward-motivated encoding by question type with 95% bootstrapped 
confidence intervals. B plot of recognition accuracy for reward-motivated encoding across question types with 95% bootstrapped confidence intervals (β = 0.142, 
95% HPDI = [0.026, 0.256], BF = 5.446). C plot of recognition accuracy for reward-motivated retrieval by question type with 95% bootstrapped confidence intervals 
D plot of recognition accuracy for reward-motivated retrieval across question types with 95% bootstrapped confidence intervals (β = − 0.046, 95% HPDI = [− 0.176, 
0.077], BF = 0.447). 

Table 1 
Coefficients estimates for Bayesian Mixed-Effects Logistic Regression on 
response accuracy estimating the effects of Reward, detail type, and their in
teractions in Experiment 1 with 95% Highest Posterior Density Intervals (HPDI).  

Predictors Log-Odds Std. Error L-HPDI U-HPDI BF 

Intercept 0.889 0.05 0.790 0.984  
Reward 0.148 0.06 0.022 0.256 5.588 
Contextual − 0.011 0.044 − 0.090 0.086 0.233 
Perceptual − 0.242 0.042 − 0.324 − 0.157 > 1000 
Trial 0 0.001 − 0.001 0.001 0.003 
Reward x Contextual 0.042 0.073 − 0.101 0.194 0.463 
Reward x Perceptual − 0.046 0.072 − 0.185 0.098 0.440 

Reported here are the point estimates of the posterior (mean), the standard 
error, the lower- and upper-highest posterior density 95% interval (L-HPDI and 
U-HPDI) and Bayes factor (BF). Bayes factors reflect the degree of evidence in 
favor of the alternate hypothesis (β ∕=0). Values greater than 1 indicate evidence 
in favor of the alternate hypothesis, while values lower than 1 indicate evidence 
for the Null hypothesis (β = 0). 

Table 2 
Coefficients estimates for Bayesian Mixed-Effects Linear Regression on log 
response-times estimating the effects of Reward, detail type and their in
teractions in Experiment 1 with 95% Highest Posterior Density Intervals (HPDI).  

Predictors Estimates Std. Error L-HPDI U-HPDI BF 

Intercept 0.789 0.023 0.742 0.830  
Reward 0.006 0.01 − 0.013 0.025 0.023 
Contextual 0.155 0.007 0.140 0.169 > 1000 
Perceptual − 0.083 0.006 − 0.095 − 0.070 > 1000 
Trial − 0.001 0 − 0.0009 − 0.0002 0.115 
Reward x Contextual 0.007 0.013 − 0.018 0.030 0.026 
Reward x Perceptual 0.002 0.012 − 0.022 0.026 0.027  
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recognition memory accuracy was the result of increased task-relevant 
processing such as strengthened stimulus encoding rather than a 
change in trial-by-trial retrieval strategy—in turn, corroborating the 
observations above that reward level affected accuracy, but did not alter 
RTs. 

4. Experiment 2: reward-motivated retrieval 

4.1. Method 

4.1.1. Participants 
Forty-six undergraduate students were recruited through McGill 

University's participant pool. Again, we excluded participants whose 
overall response accuracy (i.e., percentage of total correct) was not 
significantly greater than chance level (binomial test at the 0.05 level); 
two participants were excluded on this basis, resulting in 44 participants 
remaining in the analysis (Meanage = 20.3, Rangeage = 18–22, SDage =

0.983, 79.5% female). 

4.1.2. Encoding phase 
The encoding phase was identical to Experiment 1, except for the 

video presentation order which was randomized and preceded only by a 
1-s fixation cross (‘+’) and the video title, mirroring the retrieval phase 
of Experiment 1. No information about the potential to earn a reward or 

about the videos' associated reward value was provided at the time of 
encoding; reward contingencies were only present at retrieval. Again, 
videos were presented with a blue or orange frame, with each color 
associated with a reward condition—unbeknownst to the partic
ipant—and counterbalanced. Critically, both the presence of a reward 
manipulation and the color-reward level mapping were only revealed to 
participants during the instructions for the retrieval phase. 

4.1.3. Retrieval phase 
After a ten-minute delay period (identical to Experiment 1), partic

ipants completed 144 trials of a recognition memory test. On each trial, 
participants were first presented with an image of a 25-cent coin or a 1- 
cent coin for one second, meant to indicate the reward value of a correct 
response for the following statement. Next, they saw a video title, and 
were prompted to press the spacebar when they wished to see the 
recognition question. As in Experiment 1, a one second fixation cross 
followed this response, and then participants were presented with a 
statement about a detail contained in the video. Keyboard response 
mappings were identical to Experiment 1. Questions were presented in a 
blocked fashion where each block consisted of 36 questions from a single 
reward condition for a total of 4 blocks. The reward value alternated by 
block and the starting value was counterbalanced between participants. 
This blocking scheme was designed to parallel, as best as possible, the 
blocking of the reward manipulation in the encoding phase of Experi
ment 1. Finally, following the procedure of Experiment 1, participants 
completed a memory test for the titles of the videos after the retrieval 
phase, followed by a test of explicit memory for the reward level 
manipulation. 

5. Results 

5.1. Detail recognition 

Again, we probed whether reward, now presented at retrieval, 
imparted any effect on recognition memory using hierarchical Bayesian 

Fig. 3. Plot of posteriors of the best-fitting decision parameters for the DDM model for both A reward-motivated encoding and B for reward-motivated retrieval.  

Table 3 
Parameter estimates for the DDM model for reward-motivated encoding.   

Mean Median SD L-HPD U-HPD 

Drift Intercept 0.341 0.341 0.022 0.295 0.383 
Drift Reward 0.064 0.064 0.022 0.020 0.107 
Threshold Intercept 2.468 2.467 0.034 2.399 2.534 
Threshold Reward 0.038 0.039 0.031 − 0.02 0.096 
Non-DT Intercept 1.014 1.013 0.040 0.936 1.092 
Non-DT Reward 0.012 − 0.012 0.011 − 0.035 0.009  
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logistic regression. As depicted in Fig. 2C, the reward manipulation 
during retrieval did not change overall response accuracy between high- 
(Maccuracy = 72.7%) and low-reward (Maccuracy = 71.7%) trials, nor did it 
depend on detail type. Unlike in Experiment 1, we found little evidence 
for an effect of reward on correct responding at the time of retrieval (β =
− 0.046, 95% HPDI = [− 0.176, 0.077], BF = 0.447; see Table 4 for all 
posterior effect estimates). As with the previous experiment, we found 
that participants were less accurate on questions probing perceptual 
details (β = − 0.482, 95% HPDI = [− 0.636, − 0.340], BF >100) 
compared to event details. Additionally, we did not observe any robust 
effects of the reward manipulation on RTs (see Fig. 2D; reward effect β =
− 0.002, 95% HPDI = [− 0.024, 0.023], BF = 0.024; see Table 5). 

5.2. Memory for reward incentives 

As with Experiment 1, we found that participants' explicit memory 
for the reward level associated with each video (Maccuracy = 74.3%) was 
better than chance (β = 1.148, 95% HPDI = [0.863, 1.454]; see 
Table S3). Further, participants' memory for the associated reward level 
was not different for the high- and low-reward videos (β = 0.081, 95% 
HPDI = [− 0.123, 0.291], BF =0.701; see Table S3). Following Experi
ment 1, we failed to observe a significant correlation between reward 
association accuracy and the effect of reward on recognition memory (r 
= 0.186, 95% HPDI = [− 0.09, 0.44]; see Supplemental Materials). 

5.3. DDM analysis 

In Experiment 2, we tested whether presenting varying reward 
incentive cues at retrieval would increase accuracy via slower, more 
cautious responding (i.e., increasing response thresholds). Following 
Experiment 1, we fit a model where DDM parameters were allowed to 
vary by trial-level reward values but failed to find an effect of rewards on 
threshold as the highest posterior density interval included zero (Fig. 3B, 
see Table 6). Unexpectedly, we found a modest effect of reward on non- 
decision-time: based on the best fitting model, the 95% HPD interval of 
the difference between high- and low-reward non-decision time fell 
between 0.001 and 0.051—suggesting that participants spent more time 
on presumed non-retrieval-related processes (i.e., unrelated to response 
accuracy) on high-reward trials. In the DDM, non-decision-time reflects 
the component of RTs which is independent of response accuracy (e.g., 
motor or other nonspecific processes). At the same time, as noted above, 
we failed to find a corresponding change in RTs between reward 
conditions. 

6. General discussion 

Although reward is known to enhance episodic memory, and in turn, 
guide future behaviour (Shohamy & Adcock, 2010), the nature of these 
enhancements is yet unclear. The present study assessed the effects of 
reward on memory at both encoding and retrieval and determined 
whether reward targets certain aspects of complex, detailed memories. 
We used a novel experimental paradigm in which participants viewed 
video stimuli depicting complex events and completed a recognition 

memory test for different detail types (i.e., event, contextual, and 
perceptual) from the videos. In Experiment 1, reward information was 
presented immediately prior to encoding the videos, and we found a 
reliable difference in recognition memory accuracy for all detail types 
between high- versus low-value videos, providing evidence for a reward- 
motivated encoding effect on memory (Adcock et al., 2006; Murty & 
Dickerson, 2016; Wolosin et al., 2012). In Experiment 2, reward infor
mation was presented immediately prior to the recognition memory 
questions, and we failed to find a reliable difference in recognition 
memory accuracy for details from high- versus low-value videos. Using 
DDM analyses, we found evidence that the corresponding change in 
accuracy observed when reward was presented at encoding reflected an 
increase in the fidelity of the memory trace rather than a change in 
explicit retrieval strategy. 

The reward-motivated encoding effect observed in our study fits with 
previous work identifying an episodic memory benefit for highly 
rewarded information over low or unrewarded information using 
simpler laboratory-based stimuli (Castel, Murayama, Friedman, McGil
livray, & Link, 2013; Miendlarzewska et al., 2016; Murty & Dickerson, 
2016; Murty, Tompary, Adcock, & Davachi, 2017; Talmi, Kava
liauskaite, & Daw, 2021; Wolosin et al., 2012). We build upon this work 
by showing that reward-motivated encoding enhanced the ability to 
recognize all detail types from complex events. Prior work has demon
strated that different detail types are remembered in different ways 
(Moscovitch et al., 2016; Rubin, 2006; Sekeres et al., 2016, 2017; 
Sheldon et al., 2017), with a notable memory benefit for event details 
over perceptual details (Sekeres et al., 2016). Thus, our results suggest 
that when reward is explicitly presented at encoding, memory processes 
are equally oriented toward all three of these detail types. 

Unlike some work identifying that reward enhancements at encoding 
stem from the presence of prediction errors (Frank, Kafkas, & Montaldi, 
2021; Jang, Nassar, Dillon, & Frank, 2019; Rouhani, Norman, & Niv, 
2018; Rouhani, Norman, Niv, & Bornstein, 2020), our study presented 
reward in a blocked fashion at encoding, such that there was no inherent 
element of surprise or ‘error’ in the presence of reward. We further found 
that the enhanced recognition accuracy for details from events encoded 
with high reward (Experiment 1) could not be explained by participant's 
explicit memory for the reward manipulation itself, implying that the 
participants had better memory for high-value event details without 
recalling that the video in question was highly rewarded. This suggests 
that participants are not explicitly recollecting the reward associated 
with each video upon retrieval—although our results do not exclude the 

Table 4 
Coefficients estimates for Bayesian Mixed-Effects Logistic Regression on 
response accuracy estimating the effects of Reward, detail type, and their in
teractions in Experiment 2 with 95% Highest Posterior Density Intervals (HPDI).  

Predictors Log-Odds Std. Error L-HPDI U-HPDI BF 

Intercept 0.976 0.04 0.901 1.066  
Reward − 0.043 0.064 − 0.167 0.084 0.386 
Contextual 0.089 0.045 0.004 0.174 1.465 
Perceptual − 0.273 0.041 − 0.348 − 0.191 > 1000 
Trial 0 0.001 − 0.001 0.001 0.003 
Reward x Contextual − 0.004 0.078 − 0.152 0.135 0.385 
Reward x Perceptual − 0.016 0.073 − 0.146 0.134 0.440  

Table 5 
Coefficients estimates for Bayesian Mixed-Effects Linear Regression on log 
response-times estimating the effects of Reward, detail type, and their in
teractions in Experiment 2 with 95% Highest Posterior Density Intervals (HPDI).  

Predictors Estimates Std. Error L-HPDI U-HPDI BF 

Intercept 0.796 0.023 0.752 0.841  
Reward − 0.009 0.01 − 0.030 0.011 0.029 
Contextual 0.161 0.007 0.148 0.173 > 1000 
Perceptual − 0.098 0.007 − 0.111 − 0.085 > 1000 
Trial − 0.001 0 − 0.0008 − 0.0002 0.084 
Reward x Contextual 0.005 0.012 − 0.019 0.028 0.026 
Reward x Perceptual − 0.005 0.012 − 0.029 0.017 0.026  

Table 6 
Parameter estimates for the DDM model for reward-motivated retrieval.   

Mean Median SD L-HPD U-HPD 

Drift Intercept 0.414 0.415 0.021 0.374 0.456 
Drift Reward − 0.014 − 0.015 0.021 − 0.056 0.027 
Threshold Intercept 2.564 2.564 0.042 2.484 2.651 
Threshold Reward − 0.028 − 0.029 0.034 − 0.093 0.038 
Non-DT Intercept 0.968 0.967 0.048 0.872 1.059 
Non-DT Reward 0.026 0.026 0.013 0.002 0.052  
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possibility that implicit reward-related neural reactivation is enhancing 
memory performance (Wimmer & Büchel, 2016). While previous work 
suggests that participants can form detailed, explicit memories of 
reward-item associations, which in turn influence their decision-making 
(Murty, FeldmanHall, Hunter, Phelps, & Davachi, 2016), our study 
provides evidence that this may not be the case for more complex, 
naturalistic event memories. 

To explain the global effect of high reward at encoding on complex 
event memories, we consider that the reward-motivated encoding effect 
reported here is attentional in nature. Work by Aly and Turk-Browne 
(2016) has found that the hippocampus, a region of the brain crucial 
for encoding episodic memories, is modulated by attention, and allows a 
person to focus on information that is relevant to behavioural goals 
during learning. Thus, we suggest that the participants in Experiment 1 
were either automatically or strategically allocating their attentional 
resources toward details within the high-value videos to maximize later 
memory performance, and consequently rewards (Hennessee et al., 
2019). This interpretation is further buttressed by the lack of relation
ship observed between participants' ability to remember the reward- 
stimulus association and the relative benefits incurred by the reward 
manipulation; thus, the observed reward-induced changes in perfor
mance were not driven by retrieval strategy. While we did not directly 
measure any markers of overt attention at encoding, we further 
corroborated this account by using DDM to jointly model responses and 
RTs. 

The results of our DDM showed that the effect of reward likely 
operates through enhanced stimulus encoding (i.e., attention) rather 
than a change in response threshold taking place during the retrieval 
phase in response to video title cues that varied in reward. While higher 
drift rates can also result in faster response-times, this may depend on 
the other decision-parameters controlling response speed (Clithero, 
2018). In previous tasks where DDMs have been used to model recog
nition memory data, higher drift rates are thought to represent a better 
match between the test stimuli and encoded memory (Ratcliff, Thapar, 
& McKoon, 2004). The threshold is typically used as a measure of how 
much evidence an individual requires in order to make a response (i.e., 
cautious or impulsive responses) (Ratcliff & McKoon, 2008). Indeed, 
some studies in the memory domain have used the DDM to model the 
effects of aging on recognition memory (Ratcliff et al., 2004; Ratcliff, 
Thapar, & McKoon, 2010), as well as decision biases in the recognition 
of emotional stimuli (Bowen, Spaniol, Patel, & Voss, 2016). 

An implicit assumption of the DDM of a speed/accuracy trade-off 
may map onto dual process theories of episodic memory functioning, 
which frame familiarity as a fast, automatic process and recollection as a 
slow, constructive one (Yonelinas, 2002). It is possible that a speed/ 
accuracy trade-off may become apparent in populations with declining 
recollective capacity, such as older adults, due to their increased reli
ance on familiar information in decision-making tasks (Amer, Giova
nello, Nichol, Hasher, & Grady, 2019; Umanath & Marsh, 2014). Our 
findings highlight the utility of DDMs in memory research, particularly 
with respect to disentangling the processes underlying performance 
changes in response to motivational manipulations like reward. 

The lack of an effect in Experiment 2, when reward was placed at 
retrieval, was buttressed by our Bayesian analyses that found equivocal 
evidence for an effect of reward (BF = 0.447). The lack of a difference in 
memory accuracy and RTs between the high- and low- value videos, as 
well as the lack of effect of reward on drift rate and threshold (as esti
mated by the DDM analysis) lead us to conclude that the mechanism 
underlying reward-induced memory enhancements likely do not occur 
during retrieval. This interpretation is in accord with previous neuro
imaging work finding that regions of the brain associated with reward, 
such as the striatum, are activated when a reward is presented during 
retrieval due to participants' motivational goals, without influencing 
mnemonic performance (Han et al., 2010). 

In Experiment 2, we did find a reward-induced increase in non- 
decision time—taken as the component of RTs independent of 

response accuracy—without a corresponding change in response-times. 
We speculate that this effect may reflect participants' increased hesita
tion on high reward trials and may manifest in lower feelings of sub
jective confidence (Murty & Dickerson, 2016) possibly stemming from 
an increased motivation to respond accurately on high reward trials. 
Again, it is worth noting that we do not attribute these results to reward 
prediction error effects on encoding; while some work suggests that 
encountering a salient event, such as a reward, during encoding can 
enhance memory performance, the opposite effect may emerge at 
retrieval (Frank et al., 2021). Our blocked design for retrieval in 
Experiment 2 minimized the likelihood of prediction errors, as partici
pants were likely to learn the reward value of the block early on. Thus, 
the design of Experiment 2 assessed top-down motivational changes in 
response strategy and found no improvement in memory performance. 

Our finding that reward-motivated retrieval does not affect memory 
performance contrasts with prior work by Shigemune et al. (2017), who 
had participants encode word pairs which were subsequently retrieved 
under high versus low reward incentive levels. We believe that the dif
ference in our findings is due in part to the stimuli used (word pairs, in 
contrast to the complex video stimuli in the present work), but we also 
acknowledge other differences in our methodology that might have 
influenced this result. First, Shigemune et al., (2017) presented the high- 
and low-reward conditions randomly at the trial level, which likely 
induced prediction errors and permitted bottom-up modulation of 
memory that stands in contrast to our blocked design, which limited 
prediction errors as well as carry-over effects between the high and low 
reward conditions. Finally, Shigemune et al., (2017) penalized partici
pants for incorrect memory judgments, which we did not do in the 
current study. 

7. Limitations and future directions 

Unlike rewarding good performance, avoiding punishment for poor 
performance may improve memory via putatively different mechanisms. 
Recent work has found disparate effects of punishment on performance 
leading to an increase in response thresholds, but leaving drift-rates 
unaffected (Leng et al., 2020). Indeed, some work has found that pun
ishment may improve memory performance (Dunsmoor et al., 2015; 
Shigemune, Tsukiura, Kambara, & Kawashima, 2014), although with 
some inconsistent findings (Murty, LaBar, Hamilton, & Adcock, 2011). 
Relatedly, a limitation of our current experimental design is the diffi
culty in concluding whether the prospect of high reward enhances 
recognition memory performance, or whether the prospect of low re
wards leads to performance decrements. This ambiguity is further 
complicated by the possibility that introducing neutral trials (i.e., no 
reward) among rewarded trials could be interpreted as a loss (Kahneman 
& Tversky, 1979). Although we interpret our study as evidence for 
reward-motivated enhancements to memory encoding, given the design 
of our study, we cannot rule out the possibility that the difference be
tween high- versus low-value videos is driven by poorer memory for 
low-value videos. Thus, it remains unclear whether motivationally 
disparate stimuli can result in memory improvements via distinct 
mechanisms. 

Another avenue for future investigation is examining the role of 
consolidation processes in the effects of reward on memory perfor
mance. Prior work has suggested an important role for consolidation in 
enhancing reward-associated memories (Braun, Wimmer, & Shohamy, 
2018; Dunsmoor et al., 2015; Patil, Murty, Dunsmoor, Phelps, & Dava
chi, 2017; Stanek, Dickerson, Chiew, Clement, & Adcock, 2019), which 
was not considered in the present study. Similarly, future work could 
address whether the effects of reward on memory differ depending on 
how memory is probed. This follows work identifying that recall mem
ory tasks tend to rely more on recollection processes than recognition 
memory tasks (Payne & Roediger, 1987; Tulving, 1985), and neuro
imaging work suggesting that reward might have specific influences on 
recollection, such as enhancing details related to context (Elward, 
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Vilberg, & Rugg, 2015). Future work might employ a similar design 
alongside free recall of the videos to assess whether encoding and 
retrieval processes are similarly modulated by reward. 

8. Conclusion 

In conclusion, the effect of reward on memory for complex stimuli 
depends on whether incentive information is presented either when 
encoding or retrieving memoranda, but not on the type of information 
being retrieved. Our DDM and behavioural analyses jointly suggest that 
the effect of reward on memory likely reflects changes in attentional 
processing at encoding rather than changes in retrieval strategy 
engendered by an explicit memory for the reward manipulation. Our 
study builds upon well-established literature in the episodic memory 
domain which identifies an effect of reward-motivated encoding on 
memory performance, as well as on the burgeoning literature on reward 
effects at retrieval. Bringing together this work with techniques such as 
the DDM, our findings contribute to our understanding of the mecha
nisms underlying reward's effects on episodic memory. 
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