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Abstract
A spate of research has examined how individuals regulate effortful processing in service of goal-directed behaviors. One key
challenge in developing an account of this regulation is quantifying the momentary amount of cognitive effort exerted by an
individual in service of their goals. A growing body of literature has suggested using task-evoked pupil dilations as a potential
psychophysiological index of cognitive effort; however, it remains unclear whether pupil diameter indexes effort exertion or
merely reflects task load, as both are tightly intertwined. Here, we attempt to disentangle these disparate accounts of pupil
diameter by leveraging individual differences in executive function (as measured by Stroop interference) and a motivational
manipulation (i.e., monetary incentives) while participants complete a task-switching paradigm. In line with both the effort and
demand accounts, we observed larger task-evoked pupillary responses (TEPRs) for trials in which there was a task switch versus
a task repetition. Additionally, we found that larger phasic pupillary responses at baseline (without reward incentives) predicted
smaller switch costs. Mirroring this pattern, individual differences in reward-induced switch cost reductions were predicted by
reward-induced increases in phasic pupil diameter. Finally, we observed that the interrelationship between effort and pupil
diameter at baseline was modulated by individual differences in Stroop interference costs. Together, these findings provide
support for an effort account of TEPRs, and suggest that pupillometry is a viable index of cognitive effort.
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Why do we, under some circumstances, rely on costly, effort-
ful cognitive processing, while other times turn to relatively
effortless, cognitively ‘inexpensive’ forms of processing? A
spate of recent research has endeavored to examine the situa-
tional and individual factors which govern the deployment of
cognitive effort in service of task goals (Kool & Botvinick,
2018; Shenhav et al., 2017; Westbrook & Braver, 2015). Of
particular interest in this burgeoning cognitive effort literature
are tasks requiring cognitive control—broadly defined as the
capacity to flexibly adapt one’s behavior and appropriately
direct cognitive processing in accordance with internally
maintained goals. Cognitive control is readily measurable in

the lab using, for example, interference tasks such as the
Stroop or flanker (Botvinick, Braver, Barch, Carter, &
Cohen, 2001). In these tasks, successful performance is
thought to reflect not only an individual’s cognitive capacity
(i.e., executive function ability) but also the individual’s deci-
sion to invest cognitive effort at that particular moment.

According to one influential account, this decision to en-
gage in (or withhold) cognitively effortful processing is
governed by the inherent trade-off between the costs of
exerting effort and the benefits (i.e., rewards) potentially con-
ferred by effort exertion (Shenhav, Botvinick, & Cohen,
2013). On this view, previous work has found monetary in-
centives to improve task performance by offsetting the costs
of cognitive resource allocation, reflecting the mobilization of
effort (Capa, Bouquet, Dreher, & Dufour, 2013; Chiew &
Braver, 2014; Hübner & Schlösser, 2010; Otto & Daw,
2019; Padmala & Pessoa, 2011; Sandra & Otto, 2018).
Furthermore, it has been shown that people consistently avoid
expending cognitive effort when rewards are held constant
(Inzlicht, Schmeichel, & Macrae, 2014; Westbrook &
Braver, 2015), and this avoidance appears more prevalent in
individuals with limited cognitive capacity which, in turn are
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presumed to have higher effort costs (Kool, McGuire, Rosen,
& Botvinick, 2010).

A key challenge in developing an account of the regulation
of effortful behavior (or ‘metacontrol’) is the specification of a
trial-by-trial measurement of an individual’s momentary cog-
nitive effort outlay—that is, quantifying the amount of effort
an individual exerts—in accordance with costs and benefits.
One potentially promising online effort measure is pupil di-
ameter. Indeed, a considerable body of psychophysiological
work suggests that task-evoked pupillary responses (TEPRs)
might serve as a viable index of cognitive effort exertion
(Beatty, 1982), finding that across a diverse range of task
domains, increasing the effort required to produce a correct
response evokes larger TEPRs (van der Wel & van
Steenbergen, 2018). Specifically, TEPRs appear to track in-
creases in working memory load (Heitz, Schrock, Payne, &
Engle, 2008; Hopstaken, Van Der Linden, Bakker, &
Kompier, 2015; Kahneman & Beatty, 1966), response inhibi-
tion requirements (Laeng, Ørbo, Holmlund, & Miozzo, 2011;
Rondeel, Van Steenbergen, Holland, & van Knippenberg,
2015; van Steenbergen & Band, 2013), changes in task sets
(Rondeel et al., 2015), syntactic complexity of written
sentences (Just & Carpenter, 1993), and the difficulty of arith-
metic (Ahern & Beatty, 1979; Steinhauer, Siegle, Condray, &
Pless, 2004) and geometric analogy problems (Van Der Meer
et al., 2010).

However, it is unclear if pupil diameter actually indexes
effort exertion or merely reflects task demands as both con-
structs are, by nature, tightly intertwined in many cognitive
tasks (van der Wel & van Steenbergen, 2018). Put another
way, when the level of task demand increases, successful per-
formance often requires more effort on the part of participants
to meet this increased demand. To demonstrate pupil diameter
might serve as a viable measure of cognitive effort outlay,
separate from task demand, the present study seeks to examine
whether changes in TEPRs indeed reflect levels of effort
investment—both varying intrinsically as a function of indi-
vidual differences, and extrinsically, evoked by changes in
reward incentives—while holding task demands constant.

Indeed, disambiguating the effort and demand accounts of
TEPRs is important because this body of extant pupillometry
work, taken as a whole, finds inconsistent relationships be-
tween individual differences in cognitive task performance
and TEPRs (van der Wel & van Steenbergen, 2018). For ex-
ample, lending support to an effort account of TEPRs, height-
ened TEPRs were found to be associated with improved N-
back performance (Rondeel et al., 2015), and fewer errors on
mental arithmetic problems (Ahern & Beatty, 1979). Other
work has found that within-individual increases in TEPRs
track improvements in performance on flanker-type tasks
(Diede & Bugg, 2017). Interpreting these results within a
cost-benefit framework, individuals with larger effort costs
presumably invest less effort than individuals with smaller

effort costs (Kool & Botvinick, 2018), and taking task perfor-
mance as a proxy for effort investment, differences in effort
investment would explain the finding that better performance
in these tasks is associated with larger TEPRs. In support of
this effort account, previous work has also demonstrated that
individuals high in fluid intelligence (i.e., with low effort
costs) exhibit better performance (i.e., more effort investment)
and higher TEPRs on difficult geometric analogy problems
(Van Der Meer et al., 2010).

At the same time, consistent with a demand view, larger
TEPR differences between trial types in a Stroop task (i.e.,
congruent vs. incongruent trials), were found to correlate with
larger Stroop RT interference costs (i.e., worse performance;
Laeng et al., 2011; Rondeel et al., 2015). This particular rela-
tionship between task performance and TEPRs might suggest
that pupillary responses reflect the current level of task de-
mand (i.e., the costs of cognitive control) rather than the actual
effort exerted, as those with the worst performance also had
the largest dilations. Further buttressing this view, a recent
study observed a dissociation between physiological and per-
formance measures, such that TEPRs reflect task conflict
levels in a Stroop task (congruent vs. neutral trials) in the
absence of task conflict effects on performance (Hershman
& Henik, 2019). That is, the observation that increases in task
conflict level can drive increased TEPRs without a change in
performance lends support to the demand hypothesis, as this
account predicts that TEPRs should only differentiate to de-
mand levels, but not to invested effort. However, taking a
cost-benefit view of effort investment, interindividual differ-
ences in task performance could reflect variation in abilities
(i.e., effort costs) and/or motivation (i.e., reward incentives).
This might explain the variability in the reported relationships
between task performance and physiology across these
studies.

Furthermore, while there is suggestive evidence that pupil-
lary responses might index individual differences in effort
outlay, it also remains unclear if TEPRs also track within-
individual reward-induced task performance improvements
as a result of a decision to expend increased effort to obtain
rewards. Indeed, examination of intraindividual differences
are thought to be key in developing an understanding of
TEPRs, as they can potentially circumvent issues associated
with interindividual comparisons (see van der Wel & van
Steenbergen, 2018, for extended discussion). Taking a cost-
benefit view of effort expenditure, here we seek to disentangle
the effort and demand accounts of pupil diameter by (1) mod-
ulating available rewards and (2) leveraging the inherent var-
iability in individuals’ in both cognitive capacity and intrinsic
motivation to expend effort.

In line with the cost-benefit view of effort, a large body of
work demonstrates how reward incentives mobilize cognitive
effort (Botvinick & Braver, 2015). As a consequence, task
performance increases when large monetary rewards hinge
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on the successful deployment of cognitive control, compared
with smaller reward incentives (Aarts et al., 2014; Bijleveld,
Custers, & Aarts, 2009) or the absence of reward incentives
altogether (Hübner & Schlösser, 2010; Locke&Braver, 2008;
Padmala & Pessoa, 2011). For example, in task-switching
paradigms—where task switch costs are thought to reflect,
in part, reconfiguration costs necessary for shifting between
task sets (Monsell, 2003)—larger performance-contingent
monetary rewards engender task switch costs reductions,
which are interpreted as a marker of increased effort invest-
ment (Capa et al., 2013; Fröber & Dreisbach, 2016;
Kleinsorge & Rinkenauer, 2012; Otto & Vassena, 2020). If
pupil diameter is thought to reflect effort investment, we
would also expect that reward-induced changes in task perfor-
mance should also be reflected in TEPRs. Indeed, previous
pupillometry work finds that reward incentive levels increase
TEPRs on difficult trials in a working memory task (Bijleveld
et al., 2009). Similarly, other work has also found reward
induced increases in both transient (i.e., trial-by-trial) and
sustained pupil diameter, suggesting a distinct role for using
pupil diameter to track changes in motivational state (Chiew
& Braver, 2013, 2014). However, while these studies find that
reward manipulations effectively modulate TEPRs, they did
not examine whether these TEPR modulations are related to
reward-induced task performance, which would lend strong
support to an effort view of TEPRs (van der Wel & van
Steenbergen, 2018). Thus, manipulating reward incentives of-
fers an opportunity to study the intraindividual modulations of
effort exertion (i.e., reward induced changes in task perfor-
mance) and its subsequent effects on pupil diameter, while
holding task demands (i.e., difficulty) constant.

Finally, individual differences in cognitive capacity (i.e.,
effort costs) might bear upon the relationship between
TEPRs and behavioral markers of effort exertion, as effort
avoidance is observed to bemore prevalent in individuals with
limited cognitive ability (Kool et al., 2010), and more recent
work finds that individuals with lower executive function (EF)
capacity benefit the most from monetary incentives during
task-switching (Sandra & Otto, 2018). Thus, we also assessed
how differences in more general EF capacity, as measured by
Stroop interference costs—which are thought to tap into EF
abilities (Kane & Engle, 2003)—moderate the relationship
between rewards and effort allocation. While the Stroop task
and task-switching rely, in part, on shared EF capacities
(Miyake et al., 2000), they also impose unique requirements,
respectively, on inhibition and set-shifting processes. Our use
of qualitatively different EF-dependent tasks to separately as-
sess individual differences underscores the generalizability of
the relationship between effort costs and effort expenditure, as
evidenced behaviorally and in TEPRs, while at the same time
mitigating circularity issues potentially arising from the use of
a task-switch-based measure to understand the relationship
between task switch costs and TEPRs. Beyond cognitive

capacity, other work has highlighted the variability in people’s
aversion to exerting effort, suggesting that some individuals
value effortful thought more than others (Inzlicht et al., 2018),
over and above differences cognitive ability. Indeed, differ-
ences in intrinsic effort valuation predict the amount of money
a person is willing to accept to exert effort (Westbrook,
Kester, & Braver, 2013) and the extent of reward-induced
improvements on task performance (Sandra & Otto, 2018).
Therefore, we further assess how interindividual differences
in effort avoidance, operationalized by the Need for Cognition
scale (NFC; Cacioppo, Petty, & Feng Kao, 1984), predict
reward-induced effort recruitment, both behaviorally and
physiologically.

Finally, we examine how tonic (i.e., nonstimulus-evoked)
changes in pupil diameter relate to task engagement and
arousal. Previously, tonic pupil dilations have been shown to
reflect control state changes (i.e., task engagement; Gilzenrat,
Nieuwenhuis, Jepma, & Cohen, 2010), reward-induced
changes in arousal (Chiew & Braver, 2013, 2014), and indi-
vidual differences in cognitive ability (Heitz et al., 2008; Van
Der Meer et al., 2010). Accordingly, we also examine the
extent to which reward incentives increase tonic pupil diame-
ter, and whether those high in EF capacity (as indexed by
Stroop interference costs) also have larger tonic pupil diame-
ter, as was previously reported for those high in fluid intelli-
gence (Van Der Meer et al., 2010) and working memory
(Heitz et al., 2008). Finally, we examine whether individual
differences in motivation to deploy effort (indexed by NFC)
relate to tonic pupil diameter, and whether the effect of reward
on tonic pupil diameter depends on these individual
differences.

Method

Overall experimental procedure

We first assessed individual differences in motivation to exert
effort (NFC) and EF abilities (Stroop interference costs).
Following the individual difference assessments, participants
were asked to complete a ‘baseline’ taskswitching paradigm in
the absence reward incentives, before completing the same
paradigm under two different levels of reward incentives,
termed low-reward and high-reward blocks. We recorded
pupil diameter during all task-switching blocks.

Participants

Eighty English-speaking participants (55 females; mean age =
22.08 years, SD = 3.03 years) were recruited from the McGill
University community for a base remuneration of $20 CAN
and a performance-contingent cash bonus of up to $13.20. All
participants had corrected- to-normal vision, and had no
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reported color blindness or diagnosis of psychiatric or neuro-
logical conditions. Prior to the experiment, participants pro-
vided informed consent in accordance with the McGill
University Research Ethics Board.

We excluded the data of five participants missing more
than 20 trials, one participant who failed to perform the task
with at least 80% accuracy overall, and four participants for
which no reliable pupil dilation data could be collected due to
technical issues with the eye tracker. For those analyses in-
volving the NFC, we excluded two additional participants
who were missing NFC questionnaire responses. Finally, for
those analysis involving the Stroop task, we excluded an ad-
ditional six participants for having less than 80% overall
Stroop task accuracy.

Materials and procedure

Prior to completing computerized tasks, participants first com-
pleted the Need for Cognition (NFC) questionnaire to assess
individual differences in their tendency to engage in effortful
thinking (Cacioppo et al., 1984). The questionnaire involves
rating 18 statements—such as “I find satisfaction in deliberat-
ing for hard and long for hours” and “I only think as hard as I
have to”—rated on a scale of how characteristic they are of the
participant (1 = extremely uncharacteristic to 5 = extremely
characteristic). Participants also completed the behavioral
approach/inhibition scales (BIS/BAS; Carver & White,
1994), which was not examined in the present analysis.

In the computerized task portion of the experiment, partic-
ipants were seated comfortably in front of a 24-inch monitor
set to a resolution of 1,280 × 1,024 pixels in a dimly lit room.
Participants were instructed to keep their heads still and rested
on a mount positioned 60 centimeters away from the screen.
During both the Stroop and switching paradigm tasks, partic-
ipants’ right pupil diameter was measured using an EyeLink
1000 eye tracker (SR Research, Osgoode, ON) set to a sam-
pling rate of 250 Hz. Stimuli were presented using PsychoPy
(Version 1.85.3), synchronized with the eye tracker. Prior to
each task block, participants underwent a standard 9-point
calibration procedure.

Stroop interference task

Participants completed a computerized version of the
Stroop interference paradigm (Kerns et al., 2004; Otto,
Skatova, Madlon-Kay, & Daw, 2015) to measure individ-
ual differences in executive function. Participants were
instructed to identify, as quickly and accurately as possi-
ble, the color (i.e., green, red or blue) of the font a word
was presented in (i.e., ‘GREEN’, ‘RED’, or ‘BLUE’),
corresponding to three keys (‘j’, ‘k’, or ‘l’), with
stimulus–response mapping counterbalanced between par-
ticipants. Participants completed a total of 120 trials, on

90 of which the word and font color matched (congruent
trials), and on the remaining 30 trials they did not match
(incongruent trials), presented in a pseudorandomized or-
der. Before starting the task, participants were given 10
practice trials to get accustomed to the timing and re-
sponse procedure and received trial-by-trial feedback
(600 ms) as to whether their response was correct or in-
correct. During the task, participants were shown a fixa-
tion cross in yellow for 1.5 seconds before being shown
the target and given 1.5 seconds to respond without
feedback.

Task-switching paradigm

After completing the Stroop task, participants completed a
number magnitude-parity task-switching paradigm (Kool
et al., 2010). In this task, participants were presented a single
digit (9, 8, 7, 6, 4, 3, 2, or 1) and were asked to judge either the
magnitude (larger or smaller than 5) or the parity (even or odd)
of the number, depending on the position of a bar above or
below the digit, with position-task mappings counterbalanced
between participants. The task (i.e., magnitude or parity) cue
was chosen to reduce luminance-driven changes in
pupillometric responses. Importantly, for approximately half
of the trials, participants repeated the same task from the pre-
vious trial and on the other half of trials switched to the other
task. The order of presentation of repeat and switch trials was
pseudorandomized. Additionally, participants were presented
with 10 practice trials with accuracy feedback to adjust to the
timing and response procedure.

On each trial, a fixation cross was presented in yellow
for 2 seconds before being presented with the target digit,
and participants were given 2.5 seconds to respond,
followed by the same accuracy feedback immediately af-
ter participants’ responses (Chiew & Braver, 2013; Heitz,
et al., 2008; Hershman & Henik, 2019; Rondeel, et al.
2015). The task was broken up into 6 blocks, each
consisting of 60 trials. For the first two blocks, partici-
pants did not receive any reward incentives for correct
responses. For the subsequent four reward blocks (see
Fig. 1), participants were informed that they would re-
ceive either 10 cents (i.e., high reward) or 1 cent (i.e.,
low reward) per correct response. The reward manipula-
tion was further made apparent by a change to task feed-
back from baseline signaling the amount of money earned
on the trial (i.e., “+10 cents” or “+1 cent”; “+0 cents” for
correct and incorrect responses, respectively). The order
of reward block presentation was also counterbalanced
between participants, such that Blocks 3–4 were associat-
ed with high reward, and Blocks 5–6 were associated with
low reward, or vice versa. Experimental blocks were sep-
arated by a participant-paced break to minimize fatigue
(see Fig. 1).
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Behavioral data analysis

We analyzed participants’ responses on both the Stroop and
task-switching tasks using linear mixed-effects regressions,
using the lme4 package (Version 1.1.14; Bates & Maechler,
2019) for the R programming language. For both tasks, we
removed the first 10 trials of the experiment to mitigate the
influence of task novelty and/or early learning trials upon
TEPRs, as well as trials in which participants failed to respond
within the response window (2% of total trials for the Stroop,
and <1% for task-switching). Both Stroop interference effects
and task switch costs were calculated using RTs for correct
trials only, which were log-transformed to remove skew
(Ratcliff, 1993). We also removed unexpectedly fast or slow
trials which were greater than or less than three standard de-
viations from the participant mean (Jiang, Beck, Heller, &
Egner, 2015; Laeng et al., 2011; Padmala & Pessoa, 2011;
Qiao, Zhang, Chen, & Egner, 2017), resulting in the removal
of less than 1% of trials (for each trial type). Each individual
participant’s Stroop interference effect was calculated as the
estimated per-subject regression coefficient representing the
effect of trial incongruence. For all RT regressions, we includ-
ed a linear predictor of trial block to account for practice
effects, and categorical nuisance variables accounting for the
previous trial type (i.e., incongruent/congruent or switch/re-
peat), previous errors, and key repetitions with respect to the
previous trial. Finally, in the task-switching regressions, we
included a response congruence predictor, specifying whether
the correct response for a given stimulus mapped to the same
or different keys for both tasks.

Pupillary data analysis

Pupillary data were preprocessed in MATLAB (Version
2017b) before calculating a trial-by-trial task-evoked pupillary
response (TEPR). First, eye blinks were detected and

corrected using linear interpolation, and pupil diameter mea-
surements were passed through a high-pass Butterworth filter
to remove slow drift in below 0.012 Hz, following Knapen
et al., 2016). After this preprocessing step, pupil diameter was
first z-scored within block to make pupil units comparable
between blocks (de Gee, Knapen, & Donner, 2014; Nassar
et al., 2012; Urai, Braun, & Donner, 2017), and then
baseline-corrected on a trial-by-trial basis by subtracting the
mean diameter of a 200-ms baseline period prior to stimulus
presentation, following previous work (Eckstein, Starr, &
Bunge, 2019; Hershman & Henik, 2019). TEPRs were subse-
quently calculated as the maximum pupil diameter (Gilzenrat
et al., 2010) observed between 1,000 ms and 3,000 ms after
stimulus onset—a time windowpreviously shown to contain
the pupillary response of interest in similar tasks (Laeng et al.,
2011; Rondeel et al., 2015; see Fig. 3). Critically, the calcula-
tion of TEPRs did not depend on participants’ response laten-
cy, as switch and repeat trials typically engender different
RTs. Trial-by-trial tonic pupil diameter was calculated as the
average unfiltered pupil diameter during the 200-ms baseline
period before stimulus onset, following Chiew and Braver
(2013). We also used mixed-effects regressions to examine
task-switching effects upon TEPRs, predicting trial-by-trial
TEPRs, as computed above, on the basis of trial type (i.e.,
repeat or switch) and subtask (i.e., magnitude vs. parity).

To examine how TEPRs relate to individual differences in
task performance in baseline blocks, we calculated switch
costs (switch-trial RTs minus repeat-trial RTs) for each 30-
trial ‘mini block’ (yielding two switch costs per experimental
block). We then estimated a mixed-effects regression
predicting these RT switch costs estimates as a function of
mean mini-block TEPRs on switch trials, mini-block number
(to account for learning effects), as well as each participant’s
Stroop interference cost and NFC scores (z-scored across par-
ticipants), with random effects taken over intercepts and mini-
block. To test whether individual differences in reward-

a b

Fig. 1 a Schematic of the phases of the experiment participants
experienced. b Illustration of the timeline of the task-switching paradigm
where subtasks (i.e., magnitude or parity judgement) was cued by a bar

presented either above or below the digit (with task–cue pairings
counterbalanced between participants)
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induced TEPR changes tracked switch cost reductions, we
computed reward-induced RT switch cost changes by
subtracting baseline switch costs from the mean RT switch
cost across both reward blocks and the analogous per-
participant change in switch trial TEPRs (reward − baseline).
We then estimated a linear regression predicting change in RT
switch costs on the basis of reward-induced TEPRs changes,
Stroop costs, NFC scores (z scored across participants), and
reward presentation order.

Finally, we analyzed the effect of both reward and interin-
dividual differences on tonic pupil diameter with linear
mixed-effects regression conducted upon the average raw
(i.e., unfiltered and unstandardized within block) pupil diam-
eter during the 200-ms baseline period. Specifically, this mod-
el predicted tonic pupil diameter as a function of reward (cod-
ed linearly: 0 = baseline, 1 = low reward, 2 = high reward) and
its interaction with TEPRs, NFC scores, and Stroop costs
(both z-scored across participants). As with the previous re-
gressions, we included a linear regressor of trial number (from
1 to 360) to account for fatigue-induced task disengagement.

Results

Task performance

As typically observed in the Stroop task, participants were
slower (β = 0.2578, SE = 0.0115, p < .0001; see Fig. 2b
and Supplemental Table S1) and less accurate (β = −1.7928,
SE = 0.1803, p < .0001; see Supplemental Table S2) to re-
spond to incongruent trials compared with congruent trials.
From these RTs, we calculated Stroop interference costs as

the estimate of the per-participant incongruent effect, yielding
our individual difference measure of executive function (EF).
Analyzing performance on the baseline task-switching para-
digm (without rewards), we observe the typical task switch
costs (Monsell, 2003): participants were both slower (β =
0.1431, SE = 0.0087, p < .001; see Table 2) and less accurate
(β = −0.4508, SE = 0.0937, p < .001; see Supplemental
Table S5) on task switches compared with task
repetitions (see Table 1).

We also examined task-switching performance across
high-reward and low-reward conditions (see Fig. 2), but,
mirroring past findings (Sandra & Otto, 2018), we did not
observe a significant main effect of reward upon switch costs
(Task Switch × Reward interaction; β = −0.0087, SE =
0.0083, p = .29; see Supplemental Table S3), suggesting either
a weak effect of reward, large heterogeneity in individual re-
sponse to reward, or both. Similarly, we did not observe a
significant reward effect on switch costs expressed in terms
of accuracy (Switch × Reward interaction; β = −0.1277, SE =
0.1503, p = .39; see Supplemental Table S4), but found a main
effect of reward on accuracy such that participants were more
accurate overall on high-reward versus low-reward trials (β =
0.4613, SE = 0.1191, p < .001, see Supplemental Table S4).
Collapsing across reward levels, we found that reward re-
duced both individuals’ RTs (β = −0.0252, SE = 0.0107, p =
.01; see Table 2) and switch costs expressed in RT when
compared with baseline blocks (β = −0.0237, SE = 0.0077,
p = .002; see Table 2), as well as a main effect of reward on
accuracy, such that rewarded responses were more accurate (β
= 0.2863, SE = 0.0937, p = .03; see Supplemental Table S5),
but failed to find this effect on switch costs expressed in terms
of accuracy (i.e., Switch × Reward interaction; β = 0.0558, SE
= 0.1194, p = .64; see Supplemental Table S5).

Table 2 Mixed-effects regression coefficients indicating the influence
of trial type (task switch versus task repeat), reward level (reward vs.
baseline), and the interaction between reward and trial type on RTs in
the task-switching paradigm

Predictors Estimates SE p

(Intercept) 6.9823 0.0277 <.001*

Switch (vs. repeat) 0.1431 0.0087 <.001*

Reward (vs. none) −0.0252 0.0107 .019*

Trial −0.0002 0.0001 .001*

Task (parity vs. magnitude) 0.0245 0.0234 .294

Prev. switch 0.0106 0.0019 <.001*

Prev. missed 0.0041 0.0183 .823

Prev. incorrect 0.0145 0.0041 <.001*

Key repetition −0.0231 0.0022 <.001*

Bar (above vs. below) −0.0066 0.0234 .779

Congruent −0.0408 0.0105 <.001*

Switch (vs. Repeat) × Reward (vs. None) −0.0237 0.0077 .002*

Asterisks denote significance at the .05 level

Table 1 Average median RTs, TEPRs, and accuracy for congruent
versus incongruent trials in the Stroop task and in repeat and switch
trials across the three blocks of the task-switching paradigm

RT (ms) Accuracy TEPRs

Mean SD Mean SD Mean SD

Stroop task

Congruent 626.36 79.70 0.9865 0.0188

Incongruent 831.35 151.87 0.9283 0.0741

Task switching (baseline)

Task repeat 1,010.95 151.00 0.9423 0.0565 0.7993 0.3778

Task switch 1,176.76 175.67 0.9132 0.0655 0.9004 0.4086

Task switching (low reward)

Task repeat 960.45 163.41 0.9524 0.0421 0.7513 0.3544

Task switch 1,094.94 186.33 0.9356 0.0519 0.8390 0.3820

Task switching (high reward)

Task repeat 949.97 156.17 0.9678 0.0330 0.7933 0.3646

Task switch 1,078.30 167.74 0.9501 0.04941 0.9150 0.3739
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Task-evoked pupillary responses (TEPRs)

Examining task-evoked pupillary responses (TEPRs) on cor-
rect trials, we observed a significant difference between
switch trials in the baseline block in comparison with repeat
trials (see Fig. 3a), whereby task switches engendered larger
TEPRs than repetitions (β = 0.0881, SE = 0.0163, p < .001;
see Table 3), thus supporting the demand account. As seen in
Fig. 2a, TEPRs peaked in a window ranging from 1 to 2
seconds post stimulus onset, where these switch-versus-
repeat differences were observed. Comparing reward condi-
tions with baseline, we found no main effect of reward on
TEPRs (β = −0.0389, SE = 0.0333, p = .24; see Table 3),
nor an interaction between reward condition and trial type
(Reward × Switch; β = 0.0173, SE = 0.0187, p = .35; see
Table 3 and Fig. 3b), suggesting that reward did not increase
TEPRs on average.

Relationship between TEPRs and task switch costs at
baseline

To arbitrate between candidate effort and demand accounts of
pupillary responses, we first sought to test whether larger
TEPRs during task-switching would predict greater effort ex-
ertion in task-switching, as measured by task switch costs—a
result uniquely predicted by the effort account. As seen in Fig.
4, we found a significant effect of switch trial TEPRs upon RT
switch costs during the baseline blocks, indicating that larger
pupil dilations on switch trials predicted smaller switch costs
at baseline (β = −25.6165, SE = 11.8921, p = .03; see Table 4).

We further probed whether individual differences in Stroop
RT costs and NFC might bear upon the observed relationship
between TEPRs and task switch costs at baseline. As seen in
Fig. 5, both Stroop RT costs and NFC scores appeared to
modulate the strength of the relationship between switch costs
and TEPRs. Statistically, we found a significant interaction
between TEPR and Stroop RT costs (β = −28.6091, SE =
11.3658, p = .012) while the interaction between TEPRs and
NFC only reached marginal significance (β = 26.37, SE =
13.8212, p = .056; see Table 4). In other words, while
TEPRs significantly predicted individual task switch costs at
baseline across the entire sample, this relationship was stron-
ger for individuals lower in EF ability as operationalized by
Stroop RT costs, and marginally stronger for low-NFC
individuals.

Importantly, EF ability and NFC were not able to predict
task switch costs at baseline, as we found neither a significant
main effect of Stroop RT costs (β = 8.6686, SE = 11.7237, p
=.46; see Table 4) nor NFC scores (β = 9.3651, SE = 12.0031,
p = .43; see Table 4). The absence of a relationship suggests
that the moderating effect of individual difference measures
on the relationship between TEPR and task performance is not
driven by overall differences in performance. Furthermore, EF
ability and NFC were not significantly correlated (r = −.02, p
= .88), suggesting that these two measures tap into dissociable
constructs. Finally, to control for the possibility that these

Fig. 2 a Average switch costs—calculated as the difference between
median RT on switch and repeat trial—for the baseline, low-reward,
and high-reward blocks. b Mean RTs for correct trials in the Stroop

interference task, for congruent and incongruent trials. Error bars repre-
sent bootstrapped 95% confidence intervals. Individual dots represent
participant-level data

Table 3 Mixed-effects regression coefficients indicating the influence
of trial type (task switch versus task repeat), reward level (reward vs.
baseline), and the interaction between reward and trial type on TEPRs
in the task-switching paradigm

Predictors Estimates SE p

(Intercept) 0.5701 0.0618 <.001*

Switch (vs. repeat) 0.0881 0.0163 <.001*

Reward (vs. none) −0.0389 0.0333 .242

Trial 0.0341 0.0638 .592

Task (parity vs. magnitude) −0.0068 0.0043 .113

Prev. switch −0.1847 0.0503 <.001*

Prev. missed −0.1000 0.0137 <.001*

Prev. incorrect 0.0001 0.0001 .697

Key repetition −0.0227 0.0043 <.001*

Bar (above vs. below) −0.0321 0.0638 .615

Congruent −0.0262 0.0136 .054

Switch (vs. Repeat) × Reward (vs. None) 0.0173 0.0187 .355

Asterisks denote significance at the .05 level

Cogn Affect Behav Neurosci



individual differences in TEPR–switch-cost relationships
were attributable to age differences (MacLachlan &
Howland, 2002), we entered participant age as a covariate into
the regression and found nearly identical results, suggesting
that our results were not driven by differences in participant
age (see Supplemental Table S6). Of note, covarying out the
effect of age revealed a significant interaction between NFC
scores and TEPRs on baseline switch costs: TEPRs are a bet-
ter predictor of baseline switch costs for those low in NFC (β
= 29.1472, SE = 14.0607, p = .03; see Supplemental
Table S6).

Reward-induced changes in pupil diameter and task
performance

To further probe the effort account, we sought to test whether
individual differences in reward-induced switch cost
reductions—interpreted as increased effort investment in ac-
cordance with incentives—could be predicted by pupil diam-
eter changes. Since we did not observe significant changes in
RT switch costs between the low-reward and high-reward

conditions, we elected to compare TEPRs between rewarded
blocks (collapsed across low- and high-reward blocks) and the
baseline block. For each participant, we calculated (1) the
difference in switch costs between rewarded and nonrewarded
blocks and (2) the difference in switch-trial TEPRs between
rewarded and nonrewarded blocks (or “delta TEPRs”).
Plotting these scores against each other in Fig. 6, we see that
majority of the switch cost difference scores are negative—
indicating reward-induced switch cost reductions—and these
differences are related to changes in switch-trial TEPRs.
Statistically, we observed a significant predictive relationship
between reward-induced changes in switch trial TEPRs and
reward-induced changes in switch costs, as indicated by a
main effect of delta TEPRs on delta switch costs (β =
−31.0843, SE = 13.1172, p = .02; see Table 5). This result

Fig. 3 a Time series depicting the stimulus-onset (dashed line) locked
average pupil diameter over the course of trials. Median response times
for each trial type are depicted as solid vertical lines. The shaded area
shows the time period used to calculate TEPRs. bBar graph depicting the

average TEPR by trial type (switch vs. repeat) and reward condition.
Error bars represent bootstrapped 95% confidence intervals. Individual
dots represent participant-level data

Fig. 4 Scatter plot depicting the relationship between TEPRs on switch
trials (horizontal axis) and switch costs during the baseline block (vertical
axis)

Table 4 Mixed-effects regression coefficients indicating the influence
of TEPRs, NFC scores, Stroop costs, and their interactions on mini block
switch costs in the baseline block of the task-switching paradigm

Predictors Estimates SE p

(Intercept) 30.0812 <.001*

TEPR 11.8921 .031*

Stroop cost 11.7237 .460

NFC 12.0031 .435

Mini block 10.2607 .371

TEPR × Stroop Cost 11.3658 .012*

TEPR × NFC 13.8212 .056

Asterisks denote significance at the .05 level

Cogn Affect Behav Neurosci



provides further support for the effort account as it suggests
that intraindividual, reward-induced modulations of effort are
tracked by TEPR changes, while, critically, task demand
remained constant.

Tonic pupil diameter

Finally, we sought to test whether reward-induced changes in
arousal would manifest in tonic pupil diameter, operational-
ized here as the average raw pupil diameter during the baseline
period of each trial. Indeed, as depicted in Fig. 7, we found
that tonic pupil diameter increased linearly with reward incen-
tive level (β = 251.1978, SE = 9.3582, p < .001; see Table 6),
corroborating previous observations examining reward-
induced tonic pupil diameter changes (Chiew & Braver,
2013; Heitz et al., 2008). As above, we also sought to test
whether tonic pupil diameter, measured during baseline and
reward blocks, could be predicted on the basis of individual
differences in Stroop RT costs or NFC, as previous work has
shown tonic pupil diameter bears some relationship with both
working memory ability (Heitz et al., 2008) and fluid intelli-
gence (Van Der Meer et al., 2010). We failed to find a signif-
icant relationship between Stroop RT costs and tonic pupil

a b

c d

Fig. 5 Scatter plots depicting the relationship between TEPRs on switch
trials (horizontal axes) and switch costs during the baseline block (vertical
axes) as a function of individual differences. The first row (a and b) is a

median split of participants based on Need for Cognition (NFC) scores,
and the second row (c and d) groups participants based on a median split
performed upon Stroop RT costs

Table 5 Linear regression coefficients indicating the influence of
change in TEPRs, NFC scores, Stroop costs on reward induced changes
in switch costs in the task-switching paradigm

Predictors Estimates SE p

(Intercept) −37.8641 12.7085 .004*

Delta TEPR −31.0843 13.1172 .021*

Stroop cost 2.2853 13.0106 .861

NFC −2.8281 13.0982 .830

Reward presentation order −3.8905 13.0287 .766

Asterisks denote significance at the .05 level
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diameter on baseline blocks (β = 3.3240, SE = 74.9657, p =
.95), while higher NFC had a marginally significant predictive
effect upon Baseline tonic pupil diameter (β = −143.5890, SE
= 74.9709, p = .05).

Examining the reward blocks separately (see Fig. 8), we
found reward-induced increases in tonic pupil diameter to be
strongest in low-NFC individuals (reward NFC interaction, β
= −39.7326, SE = 8.3446, p < .001), but did not depend on
executive functioning ability (reward Stroop RT cost interac-
tion; β = −2.8445, SE = 6.6682, p = .670). Finally, we tested
whether phasic pupillary responses (i.e., TEPRs) related to
tonic pupil diameter at the level of individual participants,
observing a significant negative relationship (β =
−248.6662, SE = 8.8030, p < .001). In other words, phasic
changes in pupil diameter appeared largest for individuals

whose tonic pupil diameter size was smallest, mirroring pre-
vious findings examining this tonic–phasic relationship
(Gilzenrat et al., 2010). Further, this tonic–phasic relationship
was moderated by reward incentives, such that higher avail-
able reward led to a stronger relationship between phasic and
tonic pupillary responses (TEPR × Reward interaction, β =
−39.7326, SE = 6.6740, p < .001). Again, to ensure these
observed relationships were not driven by differences in age
(MacLachlan & Howland, 2002), we added participant age as
a covariate to this regression and found similar results, sug-
gesting that the observed interaction between individual dif-
ferences in intrinsic motivation and reward incentives was not
attributable to differences in age (see Supplemental Table S7).

Discussion

While a considerable body of results has pointed toward using
task-evoked pupillary responses (TEPRs) as a potential index
of cognitive effort (Laeng et al., 2011; Rondeel et al., 2015;
Van Der Meer et al., 2010), other work suggests that pupil
diameter reflects task demand level (Beatty, 1982; Hershman
& Henik, 2019; Kahneman & Beatty, 1966). Here, we sought
to arbitrate between the effort and demand accounts of pupil
dilations, by measuring TEPRs while holding task demand
constant and examining how individual differences in task
switch costs—a behavioral maker of effort investment—
relate to task-evoked pupillary responses both at baseline
and in response to changes in reward incentives.

First, upon examining the interrelationship between indi-
vidual differences in task performance and pupillary responses
at baseline—in the absence of reward incentives—we found

Fig. 6 Scatter plot depicting the relationship between reward-induced
changes in TEPRs on task switch trials, computed as the difference be-
tween rewarded and baseline blocks (horizontal axis) and reward-induced
change in RT switch costs, computed as the difference between rewarded
and baseline blocks (vertical axis)

Fig. 7 Average tonic pupil diameter during the three task switching
blocks. Error bars represent bootstrapped 95% confidence intervals.
Individual dots represent participant-level data

Table 6 Mixed-effects regression coefficients indicating the influence
of reward (0 = baseline, 1 = low reward, 2 = high reward), TEPRs, NFC
scores, Stroop costs, and their interactions on tonic pupil diameter

Predictors Estimates SE p

(Intercept) 5,450.4118 74.7646 <.001*

Reward 251.1978 9.3582 <.001*

Stroop cost 3.3240 74.9657 .965

NFC −143.5890 74.9709 .055

TEPR −248.6662 8.8030 <.001*

Trial −1.1553 0.1682 <.001*

Reward × Stroop Cost −2.8445 6.6682 .670

Reward × NFC −63.8837 8.3446 <.001*

Reward × TEPR −39.7326 6.6740 <.001*

Asterisks denote significance at the .05 level
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that larger TEPRs on switch trials predicted smaller task
switch costs. In other words, holding task demand constant,
larger pupillary responses predicted better task-switching per-
formance across individuals. This result provides compelling
support for the effort account and complements previous work
that has similarly found improved task performance to be
associated with larger phasic pupil diameter (Rondeel et al.,
2015; Van Der Meer et al., 2010). At the same time, we found
evidence in support of the demand account, as TEPRs were
larger on more demanding task switch trials, mirroring previ-
ous findings that highlight the positive relationship between
TEPRs and task demand (Katidioti, Borst, & Taatgen, 2014;
Rondeel et al., 2015). Taken together, this patterns of results
observed suggests that TEPRs can potentially provide unique
information about an individual’s effort outlay, over and
above task demand level.

Second, we observed that the relationship between TEPRs
and task switch costs at baseline was strongest for those low in
EF capacity (as measured by Stroop interference effects). In
other words, individual effort costs—stemming from either
cognitive processing limitations, intrinsic motivation to ex-
pend effort, or both (Inzlicht et al., 2018)—appeared to mod-
erate the observed relationship between this putative physio-
logical measure of effort (TEPR) and the behavioral conse-
quences of effort (task switch costs), highlighting the useful-
ness of examining individual differences. Again, these results
are difficult to explain with a pure task demand interpretation
of TEPRs, as we did not find that either these trait measures
could predict task switch costs at baseline (see Table 4).
Instead, this pattern of results could suggest that the observed
variability in task performance reflects heterogenous levels of
effort investment across the entire sample—for example, for
those with the lowest EF capacity, variability in task perfor-
mance may arise from increased processing of task-relevant
information, while for those high in ability, variability in task
performance may be harder to account for. This observation
dovetails with past work finding that individuals low in work-
ing memory capacity also had larger phasic pupillary

responses while completing a demanding working memory
task (Heitz et al., 2008). Similarly, with respect to intrinsic
motivation to exert effort—as measured by the NFC scale—
we found suggestive, but statistically marginal, evidence that
individual differences in TEPRs for lower NFC individuals
more strongly predicted task-switching performance.

Third, we tested whether these observed individual differ-
ences in effort exertion, in response to increasing
performance-contingent rewards (i.e., reward vs. baseline)
were related to reward-induced changes in TEPRs. In accor-
dance with the notion of a cost-benefit trade-off guiding effort
investment (Shenhav et al., 2017), we found that reward-
induced decreases in task switch costs—interpreted as in-
creased effort investment in accordance with incentives—
were also predicted by individual differences in reward-
driven TEPR modulations. This observation provides partic-
ularly compelling evidence for the effort account, as compar-
ing TEPRs within participant addresses any concerns of po-
tential confounds that may arise when comparing between
individuals or groups (e.g., ambient lighting, age; van der
Wel & van Steenbergen, 2018).

It is worth noting that while reward incentives have previ-
ously been shown to increase pupil diameter on demanding
working memory and cognitive control tasks (Bijleveld et al.,
2009; Chiew & Braver, 2013, 2014), the current study builds
on these findings and demonstrates that reward-induced
changes in pupil diameter relate to behavioral changes, further
providing evidence that pupil diameter reflects increased ef-
fort investment. These findings extend our previous work,
revealing how EF capacity and NFC differentially predict
reward-induced cognitive effort modulations, measured be-
haviorally with task switch costs (Sandra & Otto, 2018).
Here, we found that individual differences in presumed effort
costs (i.e., EF capacity) also bear upon the strength of the
relationship between behavioral and pupillary measures of
effort exertion, and in doing so, compellingly suggest that
TEPRs might, in principle, provide a window into cost-

Fig. 8 a Average tonic pupil diameter by block type and grouping by
median split Stroop costs. b Average tonic pupil diameter by block and
grouping by median split Need for Cognition (NFC) scores. Error bars

represent bootstrapped 95% confidence intervals. Individual dots repre-
sent participant-level data
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benefit effort computations that may not be observable with
behavioral measures alone.

Our results are difficult to reconcile with a demand account
of task-evoked pupillary responses, as they suggest that
intraindividual modulations in performance can be tracked
by pupillary responses. It is possible that the observed lack
of an effect between high-reward and low-reward conditions
can be attributable to the small difference in reward values
(i.e., 1 cent vs. 10 cents per correct response) used here, or
the use of a blocked design rather than employing trial-by-trial
variation in rewards (cf. Fröber & Dreisbach, 2016;
Kleinsorge & Rinkenauer, 2012; Shen & Chun, 2011). This
is consistent with past work also finding equivocal evidence
for the ability of reward incentives alone to reduce switch
costs (e.g., Aarts et al., 2014). Here, as in our previous work,
the increase in potential rewards in high-reward versus low-
reward trials may not be sufficient to increase effort outlay
alone, but it was large enough to elicit differences between
individuals in reward-induced effort expenditure (Sandra &
Otto, 2018). Relatedly, in the specific reward incentive ma-
nipulation used here, task-switching performance at baseline
(i.e., without incentives) was measured prior to performance
in rewarded blocks, following designs employed in previous
investigations of motivated cognitive control (Chiew &
Braver, 2013, 2014; Fröber & Dreisbach, 2016). While the
fact that all participants performed the baseline block first
could potentially contribute to a practice effect—after control-
ling for linear effects of trial number and block order in our
regression models—we should note that we observed no sig-
nificant effects of mini-block order upon switch costs (see
Table 4), suggesting that performance did not merely improve
as a result of practice over successive trial blocks, perhaps
owing to the practice participants underwent prior to the base-
line blocks. Similarly, we find that while participants’ RTs
generally decreased over the course of the experiment,
TEPRs remained stable (see Table 3) suggesting the observed
reward-induced TEPR changes were not driven by practice
effects. In terms of accuracy, while participants showed slight
improvements over the course of the entire experiment (see
Supplemental Table S5), these improvements were not found
to be significant when comparing the reward blocks (see
Supplemental Table S4). Future work investigating
rewarded-guided effort allocation should employ designs that
carefully control order effects to firmly rule out the possibility
that apparent reward-induced changes in behavior and physi-
ological responses arise from practice.

It is also worth noting that task switch costs are thought
to reflect two constituent processes: a task set reconfiguration
cost accompanying task switches, which can be reduced by
increasing preparatory or proactive control, and a residual
switch cost, thought to arise from reactive control processes
stemming from task set interference (Kiesel et al., 2010).
While the task-switching paradigm employed in the present

experiment was not designed to disentangle the specific form
of effortful control—proactive versus reactive—presumably
reflected by TEPRs, we speculate that effort-linked TEPRs ob-
served here might uniquely reflect a proactive component, on
the basis of a body of previouswork linking TEPRs to proactive
control adjustments in continuous performance tasks (Chiew &
Braver, 2013, 2014). Of course, future work leveraging more
specialized task-switching paradigms that can adjudicate be-
tween reconfiguration and residual switch costs is necessary
to resolve which specific form(s) of effortful control—
proactive and/or reactive—TEPRs index. Relatedly, while the
present study did not employ a task precue, providing task cues
in advance of the stimulus permits individuals to engage in
advance preparation for task switches, which as the result of
reducing task switch costs (Kiesel et al., 2010; Monsell &
Monzin, 2006). Accordingly, while the present experimental
design is unable to conclusively link TEPRs to (effortful) pre-
paratory processes that occur in advance of stimuli but rather
speak to effort investment at the time of stimulus presentation,
future research should probe (1) the relationships between
switch costs and TEPRs under baseline and reward conditions
in a task-switching paradigm employing precues, and (2) how
parametrically manipulating the cue-stimulus interval might al-
ter these observed relationships between switch costs and
TEPRs.

Finally, we also sought to test whether changes in arousal
state or task engagement would manifest in tonic pupil diam-
eter (Unsworth & Robison, 2018). We hypothesized that in-
creasing reward would result in upregulation of arousal,
resulting in larger tonic pupil diameter, following previous
findings (Chiew & Braver, 2013, 2014; Hopstaken et al.,
2015). Confirming our hypotheses, we found that reward in-
centives increased tonic pupil diameter, suggesting that this
measure correlates to one’s overall state of arousal and is
perhaps indicative of the use of more proactive (i.e., sustained)
rather than reactive (i.e., transient) control processes (Braver,
2012; Chiew & Braver, 2013) in task-switching.

Given these results indicating that tonic pupil diameter
could index one’s attentional state, we also sought to test
whether individual differences in executive functioning and
intrinsic motivation for exerting effort were reflected in tonic
pupil diameter. While we did not observe robust relationships
between tonic pupil diameter and EF capacity, individual dif-
ferences in intrinsic motivation (measured with the NFC
scale) were found to modulate the effect of reward on tonic
pupil size. Specifically, reward-induced changes in tonic pupil
diameter were strongest for those low on intrinsic motivation
to exert effort, suggesting that reward incentives offset their
aversion to exert cognitive effort and led them to increase
general task engagement vis-à-vis arousal. However, we did
not observe a significant relationship between EF capacity and
reward-induced increases in tonic pupil diameter.
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Of note, while our phasic pupil diameter analyses found
that individual differences in EF capacity and NFC were
found to moderate the relationship between performance and
TEPRs, we failed to find predictive effects of tonic pupil di-
ameter upon performance. This pattern of results suggests that
phasic and tonic measures might index separable psycholog-
ical constructs, (i.e., momentary effort investment vs. a more
sustained arousal state) as was previously suggested (Chiew&
Braver, 2013, 2014; Unsworth & Robison, 2018). More gen-
erally, while our results speak to the importance of measuring
both individual differences in EF and intrinsic motivation, it
should be noted that our Stroop-based measure of EF is not
domain general but rather is specific to the inhibition compo-
nent of EF (seeMiyake et al., 2000). Thus, future work should
examine the extent to which the observed relationships be-
tween EF, task performance and reward responsiveness gen-
eralize to other components of EF (e.g., updating and set-
shifting) or if they are specific to the facet of EF indexed by
Stroop interference (i.e., inhibition).

Recently, it has been theorized that the relationship be-
tween limited working memory capacity and performance
on executive control tasks is mediated by a dysregulation in
the locus coeruleus-norepinephrine system, which in turn is
thought to lead to greater default-mode network activity and
lapses in attention (Unsworth & Robison, 2017). At the same
time, pupil diameter has been previously linked to locus-
coeruleus norepinephrine functioning (Joshi, Li, Kalwani, &
Gold, 2016), which, in turn, is thought to be modulated in
response to increasing arousal (e.g., via increasing task de-
mands; Aston-Jones & Cohen, 2005). Thus, pupil diameter
is thought to index momentary shifts in neuronal gain driven
by modulations in norepinephrine functioning (Aston-Jones
& Cohen, 2005; Nieuwenhuis, De Geus, & Aston-Jones,
2011) and has also been previously shown to decrease with
off-task thoughts (i.e., mind-wandering, distraction, inatten-
tion; Unsworth & Robison, 2016). These phasic pupil-linked
changes in norepinephrine-mediated attentional state also lend
support to the effort account of pupil diameter, as it has been
found that the trials in which participants report greatest task
engagement are also trials with the largest TEPRs (Unsworth
& Robison, 2016). Finally, we observed a negative relation-
ship between tonic pupil diameter and phasic pupillary re-
sponses, which was further modulated by reward. These ob-
servations buttress the putative norepinephrine-dependent
trade-off between control states (i.e., task engagement vs.
disengagement; Gilzenrat et al., 2010), and suggest that per-
haps monetary incentives alter task performance through lo-
cus coeruleus functioning.

Overall, our results weigh in favor of an effort account of
TEPRs, suggesting that pupil diameter, under controlled cir-
cumstances, can serve as viable index of cognitive effort in-
vestment in cognitive control tasks, and, in turn, that pupil
measurements can informmodels of the regulation of effortful

cognitive processing. Given the theorized neural basis for
nonluminance mediated pupil diameter changes, our results
further suggest potential neural correlates of metacontrol. As
previously discussed, it is thought that changes in pupil diam-
eter reflects locus-coeruleus norepinephrine mediated changes
in arousal state. These changes in norepinephrine are thought
to be driven by the anterior cingulate cortex (ACC; Aston-
Jones & Cohen, 2005), which has been previously implicated
in signaling the need for increased cognitive control
(Botvinick, Cohen, & Carter, 2004; Braver, Barch, Gray,
Molfese, & Snyder, 2001; Carter & Van Veen, 2007).
Interestingly, it has also been shown that, to some degree,
pupil dilations in nonhuman primates correlate with spontane-
ous ACC firing, and in some cases precedes pupil-linked
modulations of locus coeruleus neuronal activity (Joshi
et al., 2016). More recent theories of ACC function posit that
the ACC allocates cognitive control by weighing the relative
costs of exerting control and the benefits (i.e., rewards) poten-
tially conferred by successfully completing one’s goal
(Shenhav et al., 2013, 2016). Mirroring this view, our results
indicate that offsetting the costs of control, by increasing re-
ward incentives, not only improved task performance but was
also tracked by increases in pupil diameter. Together, these
results suggest that task performance reflects the momentary
decisions to exert cognitive control based on the relative costs
and benefits, which are reflected in modulations of phasic
pupil diameter. Future work should directly investigate the
interrelationship between TEPRs, ACC activity, and both in-
terindividual and intraindividual variation in EF capacity, in-
trinsic motivation, and performance on cognitive control
tasks.
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